
INTEGRATING WEB-BASED USER INTERFACE WITHIN CERN'S

INDUSTRIAL CONTROL SYSTEM INFRASTRUCTURE

A. Voitier, M. Gonzalez-Berges, P. Golonka, CERN, Geneva, Switzerland

Abstract
For decades the user interfaces of industrial control

systems have been primarily based on native clients.
However, the current IT trend is to have everything on the
web. This can indeed bring some advantages such as easy
deployment of applications, extending HMIs with turnkey
web technologies, and apply to supervision interfaces the
interaction model used on the web. However, this also
brings its share of challenges: security management, ability
to spread the load and scale out to many web clients, etc...
In this paper, the architecture of the system that was
devised at CERN to decouple the production WINCC-OA
based supervision systems from the web frontend and the
associated security implications are presented together
with the transition strategy from legacy panels to full web
pages using a stepwise replacement of widgets (e.g.
visualization widgets) by their JavaScript counterpart. This
evolution results in the on-going deployment of web-based
supervision interfaces proposed to the operators as an
alternative for comparison purposes.

INTRODUCTION

Supervisions for industrial control systems are

applications that have to remains stable and shielded from

any potential factor of disruption. As such, they are usually

deployed on dedicated and isolated servers to minimize

risks and control its access.

However, users of these systems have a pressing demand

of accessing, or at list viewing, the state of their systems

without the protective hurdles. Another limitation is the

need to install specific software on the computer used for

accessing remotely the supervision applications.

These requirements are following the tendency of the

present computing era where we got accustomed to

seamlessly access any remote services through a simple

web-browser or a mobile application. A so-called Web UI

(Web User Interface) for the SCADA tool used at CERN

is implemented to answer these requests, provided security

is strictly enforced.

This UI allows to view existing panels and synoptic used

in the current native UI. The graphical engineering editor

of the SCADA tool is also accessible with a web browser,

suppressing the need to install any specific software.

Another important advantage is to profit from standard and

modern web technologies to enhance the usability of user

interfaces as a wide range of versatile graphical widgets are

available to web-enabled technologies [1].

For the end users it brings new paradigms of using

supervision applications. It allows accessing them from a

field intervention, or from a non-professional place for

rapid remote diagnostics. Yet another usage is to broadcast

the state of a particular machine to hundreds or thousands

of users of this machine, which is a need for physics

experiment collaborations.

This paper will present how this project went through

several phases of iterative researches. First by prototyping

a Web UI with classic web components. Then, facing

important limitations, introducing an alternative approach

similar to a remote desktop software embedded in a

browser.

WEB ACCESS FOR INDUSTRIAL
CONTROL SYSTEMS

At CERN, supervisions for industrial control

applications amount to a total of 600 systems. All

production applications are hosted on a dedicated network

isolated from the intranet and internet by firewalls. To

enable a web access, the following four main requirements

have been postulated.

Security: Making control systems of very costly

machines accessible to the entire world means security is

paramount. A powerful access control has to be used while

keeping the balance with usability. Indeed, with a very

secure but hard to use system users have a tendency to

circumvent the secure measures, putting the protected

systems at risk. Another point is to stick to web security

standards extensively reviewed and tested by experts and

not forge custom solutions.

Legacy: In the past 15 years at CERN a lot of scripts and

panels have been developed for the SCADA tool. This

created an important base of legacy work that cannot be

deprecated. The Web UI has to be compatible with existing

developments. Yet, at the same time it should remain

flexible and open to improve the existing panels with user

experience paradigms the web can offer.

Scalability: The new Web UI infrastructure should

support up to a thousand simultaneous clients in read-only

mode. This is for the use case of broadcasting a machine

state to the many users interested in these information. One

related requirement is that the new UI system should

minimize any extra load on the production data servers

running SCADA systems. At best, a decoupling and/or

buffering should exist between a SCADA system and its

numerous clients.

Integration: Industrial control systems are about

integrating off-the-shelves components. A Web UI for it

should have the same philosophy of reusing readily

available web servers and services. In particular, it should

integrate with web-hosting services centrally supported

within an organisation running industrial control systems.

As such, it emphasises the need to use compatible web

standards and be platform independent. In a similar way, it

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF069

User Interfaces and Tools

ISBN 978-3-95450-148-9

861 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

should also integrate naturally on the client side. Users

should not have to install any special plugin. The services

should only make use of standard web technologies. Today

those are HTML in its 5th version for structuring data,

Javascript for scripting, and CSS for styling.

Four use cases have been initially intended:

1. One user running one panel. In that case, not

only the user can see the information the panel

display, such as process values. It should also

let the user click on buttons, interacts with other

widgets and open new panels. Such display can

be used on mobile devices for field

interventions or remote debugging (while an

on-call person is away from a control room for

instance).

2. Many users can view one panel. This is

intended for broadcasting information in read-

only mode. Therefore, the actions of one user

should not affect the control system and also

what the others can see. In that case,

interactions are limited to zoom in and out of

trends, and to navigate between different

broadcasted panels.

3. Editing panels and scripts. This amount to

replicate or enable the original graphical

engineer editor of the SCADA tool to run in a

browser.

4. Shift away from the classical SCADA

paradigm of showing panels (merely the

content of a framed window) to rather display

web pages (where the content is flowing

horizontally and/or vertically). In that case,

usual web page generation methods apply. The

control system only need to provide ways to

get, set and subscribe to data, as well as call

certain functions remotely.

FULLY WEB BASED SOLUTION

The first approach chosen was to replicate all UI

functionalities using conventional dynamic web page

generation. This meant two important capabilities: Firstly,

being able to read the original description format of the

SCADA tool panels. Conveniently, these can be exported

to XML. Secondly, re-implementing all the editing

features of the graphical engineering tool.

Two major limitations arose while implementing

prototypes for this solution. The first was that panels

contain code. This code is written in a proprietary language

for the SCADA tool. This makes it difficult to execute it

on client-side as the only commonly accepted mean of

scripting in a browser is Javascript. The company of the

tool attempted to write a translator. However, it resulted in

a solution implying modification to the original codes. A

more exotic approach was considered, compiling the code

to LLVM [2] bytecode, and executing it in the browser

through the use of the software package Emscripten [3].

The initial test has shown that it would require a lot of

developments for the compiler. Panels can also contains

code that is not purely doing user interface logic. Indeed,

sometimes these panels contain business logic code that

should be executed on server-side. Solving this problem

would require a major refactoring of the existing code base.

The second major limitation was that interpreting the

XML files to draw graphic primitives of the panel is a

heavy process. There is a large combination of graphical

features, themselves dependent on the way it is rendered

today by the native Qt-based UI. This made it difficult to

keep a compatibility to the pixels, a feature needed by the

synoptic drawings. Similarly, the engineering tool would

also had to be replicated in the same way. As this tool is

quite complex and feature full, it made the task almost

impossible to write it entirely in another technology (Fig.

1).

Figure 2 describes the architecture used. This full-web

replication approach was dismissed based on all these

limitations.

Figure 1: Screenshot of the engineering tool replicated in a

prototype of the full web solution.

Figure 2: Architecture of the full web solution.

WEPGF069 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

862C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools

INTERMEDIATE SOLUTION

As a full web solution is not yet possible, the company

providing the SCADA tool proposed a more pragmatic

solution. It consists of rendering native panels on the

server-side, and send its representation to the browser

through a special protocol (Fig. 3). The browser

reconstruct the panel representation using HTML5 canvas.

Initially, the solution was thought to send the graphical

primitives as binary commands driving the Javascript

drawing engine. In the end, a protocol similar to VNC,

usually used for remote desktop applications, was chosen

instead. A Javascript client-side program takes care of

implementing the protocol and draws on the canvas.

This solution presents the advantages of keeping full

compatibility with the legacy panels and to run the panel

code directly on the server. Several performance

evaluations were carried out until representative test panels

could be displayed over bandwidth-restricted mediums

such as copper landlines and mobile phone networks.

However, although this approach is meeting most of the

requirement, when many users view the same panel, the

interactions of one user are visible to all users. This prevent

the inclusion of scrollable trends and navigation buttons.

To work around this issue, Javascript widgets can be

overlaid on top of the VNC canvas. To implement this

functionality, a hook was provided to the panel’s developer
by reusing a previous CERN project integrating Javascript

widgets and code into native panels [1]. In such case,

instead of being rendered on the server-side, the Javascript

insertion is sent to the client browser. All interactions with

these client-side widgets are limited to a single user.

Nevertheless, in case of widgets making use of process

data (e.g. trends) it is needed to disassociate the data

transfer from the VNC protocol within the same

websocket.

Figure 3: Architecture of the VNC-based solution. Red

dashed lines are the communication of rendering

primitives. Blue dotted lines are for the process data.

Dashed and dotted lines are a mix of both types going

through a single websocket.

SECURE IMPLEMENTATION

In the present state-of-the-art, two-factor authentication

is often considered a secure and usable measure. It is

understood by users that the additional minor hurdles are a

necessary evil to benefit from the additional level of

protection. Therefore, its usage is warranted to authenticate

users accessing the Web UI. CERN IT service provides a

single sign-on (SSO) implementation (based on

Shibboleth) reusable by all web services across the

organisation. This service provides two-factor

authentication based on the user password plus several

second factors: SmartCard, Yubikey, SMS OTP, and

Google Authenticator (Fig. 4). The user’s password is
actually never shared with the Web UI application front-

end. Once a user is identified, a central LDAP service

provides the information about which groups the user

belongs to. This is used to define the roles and allowed

actions within the supervision application [4].

Figure 4: Single sign-on implementation for control system

Web UIs.

CURRENT DEPLOYMENT

The VNC solution is expected to enter in production at

CERN by the end of 2015. To accommodate the various

requirements, the web server provided by the SCADA tool

will not be the one facing incoming requests. Instead, the

requests will first arrive into an application server

managing the initial SSO negotiation, spawning the UI

processes doing the rendering and connecting these

processes to the original web clients through a websocket

proxy. This implementation is thought to be scalable by

spawning the UI processes on a farm of virtual machines

managed by CERN’s Openstack service. These machines
will be part of a set of computer used to define firewall

rules such that the production SCADA servers are exposed

only to these machines. In turn, these machines will never

be reached by public traffic as all their communications

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF069

User Interfaces and Tools

ISBN 978-3-95450-148-9

863 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

with clients will transit through the application server

proxy. Penetration tests organized by CERN’s security
team will also be performed to validate the overall solution.

CONCLUSION

Enabling web access to industrial control system is an

expected feature by many CERN users. Control systems

being critical pieces of the installations it is important to

ensure a proper implementation. Considerations about

security, legacy developments, scalability and integration

are fundamental in this project.

Through various researches, prototype implementations,

and benchmarking, a suitable solution has been found

respecting all requirements. Hence, users of industrial

control systems at CERN will soon be able to access their

supervision applications through a web browser without

using dedicated software. A proper security level will be

obtained by reusing proven and standard solutions. The

proposed architecture will allow us to scale with a growing

amount of users while introducing more security layers.

Finally, the reuse of web application servers provided as a

central service by the organisation will help to keep the

maintenance and administration tasks to a minimum.

This solution is the first step, in the long term, we will

look for an implementation closer to traditional web

developments that will allow us to use any major and

mature web framework.

ACKNOWLEDGMENT

A particular thanks to M. Koller, C. Stoegerer, F. Glege,

M. Janulis, S. Lueders, S. Lopienski, and S. Petrovski for

their helpful contribution to the presented work.

REFERENCES

[1] P. Golonka et al, "FwWebViewPlus: integration of

web technologies into WinCC-OA based Human-

Machine interfaces at CERN", CHEP 2013,

Amsterdam, Netherland.

[2] The LLVM Compiler Infrastructure website:

http://llvm.org/

[3] Emscripten: An LLVM-to-Javascript Compiler
project page: https://github.com/kripken/emscripten

[4] P. Golonka et al, "Integrated Access Control for

PVSS-based SCADA Systems at CERN",

ICALEPCS 2009, Kobe, Japan.

WEPGF069 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

864C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools

