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Abstract 
We present a system for acquiring and sorting data 

from select devices depending on the destination of each 
particular beam pulse in the Fermilab accelerator chain.  
The 15 Hz beam that begins in the Fermilab ion source 
can be directed to a variety of additional accelerators, 
beam lines, beam dumps, and experiments.  We have 
implemented a data acquisition system that senses the 
destination of each pulse and reads the appropriate beam 
intensity devices so that profiles of the beam can be 
stored and analysed for each type of beam trail.  We 
envision utilizing this data long term to identify trends in 
the performance of the accelerators. 

INTRODUCTION 
The Fermilab particle beam starts in its ion source, and 

from there it can be directed to a wide variety of 
beamlines and experiments.  This paper describes the 
software created to track the accelerator efficiencies 
(amount of beam transported without loss) along the 
various beamlines and for the designated destinations. We 
use the term trail to designate each of the potential uses 
and destinations. 

Trails can have a wide range of complexity. The 
simplest trails consist of only one 15Hz Linac beam 
pulse, and might go to a local beam dump, or be used to 
study Linac performance.  The more complicated pulses 
involve multiple 15Hz pulses from the Linac, and involve 
the Linac, Booster, Recycler, and Main Injector 
accelerators as shown in Fig. 1. Final destinations include 
various beam dumps along the way, a neutron therapy 
target, short and long baseline neutrino beamlines, the 
muon campus experiments, or a test beam area.    

 
 

Figure 1: The Fermilab Accelerator Complex. 
 

Collection of these more complex trails is also 
complicated by the fact that some of the simpler 15Hz 
pulse trails may occur while the more complicated trail is 
still underway in the downstream accelerators. 

   
The process starts with the overall beam pulse planning 

controlled by Fermilab’s Sequencer, which coordinates 
the production of timelines generated by the Time Line 
Generator (TLG) with other accelerator activities. At the 
implementation level, a timeline is a series of private bus 
events (TCLK). Various accelerator components are 
programmed to respond to these events to send the beam 
to the desired location.  These systems have long been in 
routine use for accelerator operation. 

For this beam trail tracking, we added or enhanced 
several software programs.  To start the process, the TLG 
now encodes the trail number onto our MDAT data bus 
when it begins instructions for each beam pulse. The 
Beam Cycle Coordinator (BCC) decodes that trail number 
and makes it available to our Acnet control system, in 
addition to many digital status bits that indicate readiness 
of various beamlines, components, permits, and 
interlocks.  These status indicators also show whether the 
accelerator chain was ready and beam pulse had the 
opportunity to follow the indicated trail, or whether it had 
to be aborted. 

With the above groundwork laid, the main 
implementation for beam trail tracking begins.  The 
tracking software has three main components:  

 The Correlator, which collects data from 
Acnet-connected devices, groups together 
readings from the same pulse, and sorts them 
by trail number. 

 The Acnet Formatter, which takes the data 
from the Correlator, aggregates and re-formats 
it and makes it available to Acnet. 

 The Database Interface, which reads the data 
over Acnet and stores it into a relational 
database.  Along the way, this also calculates 
various sums and means, and we have 
developed a user interface to help retrieve data 
of interest. 

BACKGROUND 
Main Injector Ramp Cycle 

In order to understand some of the requirements of the 
trail tracking software, it is useful to have a basic 
understanding of our Main Injector ramp cycle. The Main 
Injector accelerates protons from 8 GeV to 120 GeV, 
taking a little over one second for this acceleration.  
While it is ramping up and down, multiple batches of 
protons from the Booster can be injected into the Recycler 
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and stacked into a more intense beam. When the Main 
Injector has finished the previous ramp cycle, it is 
injected with the new beam of 8 GeV protons from the 
Recycler.  Overlapping the filling of the Recycler with the 
ramping of the Main Injector decreases the average full 
acceleration time for each beam pulse, and has enabled 
Fermilab to achieve record beam power levels. 

Not every 120GeV trail uses the Recycler in this way. 
We can also inject directly from Booster to the Main 
Injector. 

 

IMPLEMENTATION 
Correlator 

The initial data acquisition, the sorting by trail number, 
and the correlation into the appropriate 15Hz time slots is 
all done in the Correlator. Most of the data from the Linac 
and Booster is collected at 15Hz. Some of the other data 
is only collected upon a particular TCLK event, or on one 
of several different TCLK events, depending on the trail. 
We primarily collect beam intensity measurements from a 
variety of instrument types, although other readings such 
as the BCC status bits are also included. All data is 
collected through Fermilab’s Acnet control system 

Since the readings come from a variety of instruments 
connected to different front-ends, Acnet doesn’t guarantee 
that the readings will always arrive in the same order, or 
even that a reading from one front-end will even arrive in 
the same 15Hz time slice as all the other readings from 
that same slice. The load on a particular node, or 
unforeseen network delays can all contribute to this.  So 
in order to collect the maximal amount of data, with as 
few rejections for tardiness as possible, the Correlator 
maintains a sliding window of time slices it is currently 
collecting.  When one slice is “full” (meaning all devices 
for that trail have arrived) or when that slice falls off the 
end of the sliding window, that 15Hz trail is collected for 
further processing and the time slice is closed. The 
Correlator follows the useful rule that collections can’t go 
back in time, so when one slice is declared full, all 
previous unfilled slices in the window are also closed out 
for processing and any uncollected devices are noted.  
Thus the system is somewhat fault tolerant. If one 
response is dropped by the network, or if a particular 
front-end is temporarily unresponsive, data collection and 
processing can still proceed. 

Another fault-tolerant adaptation that the Correlator 
performs relates to errors from devices. If one device 
replies with some error, then the Correlator will attempt 
to restart the collection process in hopes that the error was 
only temporary and has cleared.  If a device is repeatedly 
in error, then the Correlator masks that device off the list 
of requested devices for all trails.  Periodically, data 
collection is retried in hopes that the error condition has 
cleared and the device’s reading can re-join the data set. 
Of course, faults in some crucial devices, such as the trail 
number, cannot be tolerated, and processing has to always 
wait on those errors to clear before proceeding. 

Some of our most common trails will begin at the ion 
source, go through the Linac and Booster, then into the 
Recycler for beam stacking, then into the Main Injector 
for final acceleration, and then to another final 
destination, such as the long-baseline neutrino beamline. 
However, as noted above in the explanation of the Main 
Injector ramp cycle, one trail of beam may still be in the 
Main Injector while another trail begins assembling in the 
Recycler. Or while the Main Injector ramp is occurring, 
another trail through the Booster to the short baseline 
neutrino beamline may occur.  The Correlator has to deal 
with these overlaps, making sure that the appropriate 
trails all stay sorted, and dealing with the fact that one 
Recycler and Main Injector fill will include multiple 
15Hz pulses from the Linac-Booster chain.  The software 
uses the term super-trail to describe any trail which 
includes multiple 15Hz batches. 

When the Correlator knows it is finished with any trail 
or super-trail, they are sent off to the Acnet Formatter for 
further processing.  The end of a super-trail is typically 
indicated by some TCLK event, which the Correlator has 
to monitor. 

The devices to be read, acquisition frequencies or 
triggering events, devices needed per trail, and 
classifications of trails are all driven by a human-readable 
configuration file.  Thus it is straight-forward to change 
the devices requested for any particular trail. 

Acnet Formatter 
The Acnet Formatter is much less complicated than the 

Correlator. As it receives trails from the Correlator, it 
builds them into a list of trails for each trail number. 
Periodically (typically on a 10 second interval), for each 
trail list, the Acnet Formatter reformats and packs the data 
into structures (arrays) that can be transmitted over Acnet 
to any requestor.  A header is prepended onto the data 
structure and the structure is built into a documented 
format.   

While performing these collection and reformatting 
tasks, the Acnet Formatter also creates several diagnostics 
for each trail, such as number of completely filled vs. 
unfilled trails, counts of the number of times a device is 
missing (uncollected) from a trail, which is device is most 
often missing, which device’s reading most often returns 
with a timestamp outside of the sliding collection 
window, and the total number of device readings with 
such a bad arriving timestamp. 

All the formatted trail data structures and the diagnostic 
values are made available as Acnet device readings. 

Database Interface 
The Database Interface periodically reads the packaged 

trail data from the Acnet Formatter and stores the 
readings in a Postgress database.  It computes several 
averages and sums, for instance the sum of each intensity 
device in a trail over a day.  These computed values are 
also written to database tables, so graphs and displays of 
more commonly used values can be created more quickly, 
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without having to retrieve all the raw data and compute 
everything at plotting time. 

We have created a graphical interface into the database 
to enable users to create useful plots of the data.  The Java 
program allows the user to apply multiple selection 
criteria, including date, device name, summed vs. raw 
data, and more.  This and other Java classes enable us to 
create daily or weekly beam summaries and statistics. 

 
Figure 2 shows a sample plot of the type that can be 

made with the database information using the Java 
interface program.  Figure 2 shows the daily summed 
intensity for a variety of devices along the beam trail and 
accelerator chain. 

PROGRAMMING 
The Correlator and Acnet Formatter are implemented in 

Erlang in our Erlang-based ACSys front-end framework. 
The Acnet Formatter is one of the frameworks “device 

drivers”, with custom code handling the receipt of trail 
messages from the correlator and the repackaging of that 
data into Acnet-accessible structures.  The Correlator is 
implemented as a supporting process to that device driver, 
being started by the driver and reporting to it.  Data 
collection is done using our standard Erlang-based data 
collection client, and this project was the heaviest test of 
that collection client software to date and suggested 
several refinements of it. 

The Database Interface is written in Java and uses our 
standard Acnet libraries to read data from the beamtrail 
collection front end. A Java OAC performs the 
continuous job of reading the assembled trail data and 
exporting it to the database. Other standalone Java classes 
and programs provide a graphical user interface to the 
database data and can create plots with many options 
from the data. 

 

 
Figure 2: A sample plot showing summed intensities for a variety of device locations.

 

SUMMARY 
We have implemented a set of programs that enhance 

Fermilab’s ability to analyse accelerator performance. We 
collect beam intensity readings and sort them by the 
different trail each beam pulse follows through the 
accelerator and experimental target area chain. The 
software is able to handle temporary outages by 
individual reporting devices, and untangles overlapping 
beam cycles. With the database of information collected, 
we are able to produce summary plots and reports that 
provide information about short and long term 
performance of the accelerators. 
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