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Abstract 
J-PARC (Japan Proton Accelerator Research Complex) 

consists of Linac, 3 GeV rapid cycling synchrotron ring 
(RCS) and Main Ring (MR). In the Linac and the RCS, 
data of about 64,000 EPICS records have been acquired for 
control of these equipment. The data volume is about 2 TB 
every year, and the total data volume stored has reached 
over 12 TB. The data have been being stored by a 
Relational Database (RDB) system using PostgreSQL 
since 2006 in PostgreSQL, but it is becoming that 
PostgreSQL is not enough in availability, performance, and 
flexibility for our increasing data volume. In order to deal 
with these problems, we proposed a next-generation 
archive system using Apache Hadoop, a distributed 
processing framework, and Apache HBase, a distributed 
database.  

In this paper we are reporting that we have re-designed 
and re-constructed the cluster with resolving some issues, 
including enhancing hardware of master nodes, creating 
scripts to automatically construct nodes, and introducing 
monitoring tools for nodes. Having adjusted the 
configurations of HBase/Hadoop and measured the 
performance of our new system, we are also reporting its 
results and considerations. 

INTRODUCTION 

J-PARC is controlled with a lot of equipment, and we 
have been archiving a time series of operation data 
provided from about 64,000 EPICS records for the Linac 
and the RCS since 2006 [1]. PostgreSQL has been used in 
the present data archiving system, but it has some problems 
of capacity, extensibility, and data migration. In order to 
deal with these problems, we proposed a next-generation 
archive system [2][3] using Apache Hadoop [4], a 
distributed processing framework, and Apache HBase [5], 
a distributed database.  

In the previous paper we reported that we updated the 
versions of HBase/Hadoop composing our test system [6], 
to conquer a single point of failure by making redundant a 
master node, and we showed issues to fix our tools in the 
new system. Having adjusted the configurations of 
HBase/Hadoop and measured the performance of our new 
system, we are also reporting its results and considerations. 

RECONSTRUCTION OF THE CLUSTER 

Replacement Master Node 

 We have updated Hadoop to the version 2.2.0 now. 
Hadoop 2.x provides a hot standby NameNode, which can 
take over the state that the previous active NameNode has 

provided, with no downtime. At least three master nodes 
are needed for this function to deploy ZooKeeper [7] and 
JournalNode. ZooKeeper is a high-performance 
coordination service for distributed applications, and both 
Hadoop and HBase depend on. JournalNode is one of the 
components of Hadoop. ZooKeeper and JournalNode are 
based on a majority decision among nodes, and it is 
meaningful to deploy them on an odd number of machines. 
We replaced the master node 2 and 3. The layout of the 
system is illustrated in Figure 1 and the spec of our system 
is listed in Table 1.  

When the master nodes has been replaced, processes of 
Hadoop has been relocated, and memory allocation has 
been reconsidered. The allocation of memory shows in 
Table 2. 

 

 

Figure 1: The archiving system configuration. 

Table 1: Spec of Hadoop and HBase System 

Master 
Node 1 

DELL PowerEdge R610 
CPU: Intel Xeon E5620 (4Core, 2.4GHz) 
MEM: 24GB 
HDD: 600GB x4 (RAID10) 

Master 
Node 2, 3 

DELL PowerEdge R320 
CPU: Intel Xeon E5-1410v2 (4Core, 2.8GHz) 
MEM: 24GB 
HDD: 600GB x4 (RAID10) 

Slave 
Node 

DELL PowerEdge R410 
CPU: Intel Xeon E5620 (4Core, 2.4GHz) 
MEM: 24GB 
HDD: 2TB x4 

Software OS: CentOS6.6 

Hadoop: 2.2.0 

HBase: 0.96..1.1 

ZooKeeper: 3.4.5  ___________________________________________  
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Table 2: Memory Allocation (GB) 

Master Node 1 2,3 Slave Node 

ZooKeeper 1 1     
Name Node   8 Data Node 1 

ZKFC   1     
Journal Node 1 1     
Resource 
Manager 

1   Node Manager 1 

History Server  1   YARN container 6 

HBase Master   4 Region Server 12 

total 4 15 total 20 

 

RAID and Mount Option 

It is common sense to use non-RAID for slave nodes in 
Hadoop. The redundancy of data in Hadoop is made by 
holding the same data in several slave nodes, and RAID 
cannot be an alternative for the Hadoop's redundancy 
because RAID just makes HDD redundant, not for the 
whole node. In place of the hot-swap function we can use 
automatic scripts to construct from scratch. It is also said 
that, a Hadoop cluster constructed with non-RAID is faster 
than a one with RAID-0 because RAID-0 makes physical 
disks keep pace with the slowest one of them. 

In the previous presentation, we constructed the slave 
nodes with RAID-5 with 4 physical disks. We have decided 
to follow the Hadoop common sense and have changed 
RAID-5 to non-RAID. To be exact, our RAID controller 
cannot handle non-RAID, and we have constructed RAID-
0 for each one disk. Ironically, that gives us an advantage 
that we can still use battery backed-up memory in the 
RAID controller. 

We use ext4 for the file system on the OS, which ext4 is 
a standard format in Linux these days. As to mount options, 
although Hadoop makes data redundant, we have chosen 
options to ensure persistence of data for a rainy day, for 
example, in the case that all nodes lose power supply all at 
once, with the exception that we invalidate I/O barrier 
because of battery backed-up memory in the RAID 
controller, as described above. We use ordered for the 
journal mode in order to shut out the possibility to see 
invalid data when it crashes, which setting is enough 
because Hadoop doesn’t support random access and 
consequently it doesn’t overwrite existing data. Our 
versions of ZooKeeper, Hadoop and HBase support Java6, 
which means dirsync is required because Java6 doesn’t 
support fsync on a directory. To tell the truth, we 
overlooked that the slave nodes in Hadoop don't invoke 
fsync unless we set the Hadoop configuration property 
dfs.datanode.synconclose to be true, which property is 
hidden from the document. The performance test described 
later was done before we found it out. 

Attribute of HBase 

 Data compression is a presupposition of HBase. There 
are two compression layers. The one is Data Block 
Encoding, which has been introduced since HBase 0.94, 
and it compresses sequential records by just storing the 
difference between records. The other is generally used 

compression algorithm like Snappy, which is applied after 
Data Block Encoding. Data Block Encoding is effective 
especially for the keys are relatively much larger than the 
corresponding values, and that compression matches our 
table design. We are showing what combination of Data 
Block Encoding and compression algorithm is best, in the 
performance test described later. 

HBase can apply a bloom filter to search for data. HBase 
should search several files, and applying a bloom filter 
beforehand narrows down the files, at the cost of a little 
increasing the resource usage. This setting is a table 
attribute, and by default it is enabled for record keys. 
Bloom filters are not applied to extract records with a range 
condition while such a way is the only one we assume to 
search records, and we have decided to invalidate a bloom 
filter and avoid wasting its resource usage. 

HBase prepares Block Cache for millisecond order 
latency. When Block Cache is enabled, data blocks once 
read from a disk are cached in memory. The cache itself is 
shared per region server, while it is per table whether Block 
Cache is used or not for the table, and this setting is a table 
attribute. As to our purpose, we assume to always get much 
data at once, and such a large data would be cached in 
client-side. The clients are not so many, and the data is 
rarely requested again. And moreover, by default, Block 
Cache can use 40% of the maximum heap and it might 
reduce the performance by consuming a lot of heap with 
frequently triggering GC. Because of these reasons we 
have decided to invalidate Block Cache. 

Cluster Management 
In order to monitoring servers we use Nagios, which is a 

mature tool and widely used in Linux servers. In Nagios 
anomaly detectors are introduced as plugins, and Nagios 
itself manages to schedule to trigger the detectors and 
notify users by e-mail if any. 

Nagios is designed to use e-mail for notification, but our 
cluster is on the LAN which is basically separated from the 
outer network, and sending an e-mail to the mail server on 
the outer network is blocked off. For now we just explicitly 
login the node the Nagios is deployed on, and check by 
parsing the file that Nagios generates at fixed intervals for 
a web application, or run an automatic script to do the same 
things. 

Some standard Nagios plugins, including pinging to 
servers, are formally distributed as a set. For other plugins 
you should write a script or something by yourself, or 
download from trusted web sites. We use two such 
convenient external plugins, check_ipmi_sensor and 
check_openmanage. Both is for collecting remote 
hardware status, but check_ipmi_sensor does via IPMI 
using a tool freeipmi, which comes from the installation 
disks of Linux OS, and check_openmanage does via 
SNMP using Dell OpenManage. They are similar but each 
has its merits and demerits. In order to monitor modules in 
ZooKeeper, Hadoop and HBase, we have created scripts as 
Nagios plugins, using the command jps in JDK for 
checking existence of Java processes, and invoking a query 
via socket communication if any. They just emulate the 
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procedures to check the modules by hand, and we would 
easily grasp what happens. 

In addition, we have installed Ganglia [8], which was 
also installed in the old cluster. Ganglia collects numerical 
data, which differs from Nagios, and Ganglia would be 
suitable to detect unusual CPU or resources usages, or to 
tune the performance. Ganglia has an attractive feature of 
using multicast so that a lot of monitoring targets don't 
inflict a heavy load on the network. 

Automatic Scripts to Construct Nodes 

We have created the kickstat file to install and configure 
OS and required software packages coming from the 
installation disks, and have created a set of installation files 
to install and configure the rest of the required packages, 
in line with the views we have described above. 

It would be preferable to construct a node automatically 
from start to end, but we should manually set up SSH keys 
or security concerns, and set up configurations to get 
hardware status via IPMI or about local environment 
dependent concerns. 

PERFORMANCE TESTS 

We measured the performance of registration and 

acquisition of records based on the assumption of actual 

usage in J-PARC, which is not intended for the general 

situation. We measured both the old cluster and the 

reconstructed new cluster. 

Conditions 

For the measurement of registration of records, we 

assume that there would be 10,000 EPICS records and we 

should regularly get a record at one second intervals from 

each EPICS record. We put records for one day into our 

cluster without stops and we measure its consumption time, 

and we repeat the same things 5 times in a row. Because 

each record is very small, in actual usage in J-PARC we 

should use a buffer to send many records together. 

According to this assumption we invalidate auto-flush and 

explicitly invoke flush at the end, and we count the 

consumption time till the flush is complete. We create 

random names as EPICS records, which is 30 characters 

randomly selected from 52 uppercase and lowercase 

alphabetical letters. We generate data from random double 

precision values, selected from 0.0 (inclusive) to 1.0 

(exclusive). Splitting regions in advance is generally 

preferable for HBase, although it is not trivial in our actual 

usage, and we expect that the balancer wakes up regularity 

and automatically splits and moves regions between nodes 

with distributing loads. As to the performance 

measurement, because we execute it in a short period and 

we should not expect the balancer, we pre-split regions and 

distribute loads from the beginning. To put it concretely, 

we assume that the randomly generated names are equally 

distributed in the name space, and equally divide the space 

by the first character of the names into regions whose 

number is same as that of our region servers. 

For the measurement of acquisition of records, we make 

use of the environment after the measurement of 

registration. Assuming that there are 5 clients 

simultaneously connecting to the cluster, we use 5 threads 

and make each thread retrieve records for one random day 

for 10 random channels, and we measure its consumption 

time for each thread. HBase would not be designed for such 

acquisition; HBase gives priority to low latency, which is 

against to Hadoop which gives priority to throughput. 

Moreover, for data acquisition many clients' random 

accessing is suitable for HBase because it well distributes 

loads to multiple regions servers, improving its overall 

performance advantage. Despite these features, we are still 

interested in the performance of a few clients accessing 

large sequential data, along the assumption of actual usage 

in J-PARC. 

As to buffers in client-side, we use the default size of the 

write buffer, which is 2MB, and we use 20,000 records for 

the read cache, which corresponds to 2MB if we count 100 

bytes for one record.  

As described before, we examine what combination of 

Data Encoding Block and compression algorithm is best 

for our table design. To put it concretely, we examine 

{none(non-use), diff, fast_diff} for Data Encoding Block, 

and examine {none(non-use), GZ, Snappy, LZ4} for the 

compression algorithm. 

Results 

The results of the performance measurement are shown 

in the following tables and figure. Table 3 shows the 

consumption time to register data for one day, averaging 

the times measured repeatedly 5 times in a row. Figure 2 

shows its transition instead of averaging in the case of the 

compression combination none-none. Table 4 shows the 

consumption time to retrieve data, averaging the times for 

threads. Table 5 shows the total amounts of data written in 

the Hadoop distributed file system (HDFS), which are 

measured in the new cluster but theoretically they rather 

depend on the combination of Data Block Encoding and 

compression algorithm. 

 

 

Figure 2:  Write time in the none-none Case (min). 
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Table 3: Write Test (min) 

 none GZ Snappy LZ4 

old cluster     

none 102.3 59.0 64.3 64.8 

diff 57.4 54.0 58.9 59.4 

fast_diff 56.7 55.9 58.5 58.8 

new cluster     

none 81.9 77.6 74.9 80.8 

diff 67.6 68.6 75.4 87.3 

fast_diff 69.0 71.7 76.4 71.4 

  

Table 4: Read Test (sec) 

 none GZ Snappy LZ4 

old cluster     

none 7.3 8.3 8.8 7.1 

diff 8.9 10.0 11.0 9.4 

fast_diff 7.5 8.9 8.2 9.4 

new cluster     

none 7.2 8.2 8.0 8.5 

diff 9.8 8.5 10.0 11.3 

fast_diff 8.6 8.6 9.0 8.3 

   

 Table 5: Sum of Stored Files (GB) 

  none GZ Snappy LZ4 

none 286.2 64.1 80.5 76.7 

Diff 53.1 47.3 52.9 53.1 

fast_diff 53.8 48.7 53.8 53.9 

  

Consideration 

For the measurement of registration of records, the old 

cluster writes data 20-40% faster except the case of none-

none, where the total amount of data written in HDFS is 

extremely larger than the other cases and the old cluster 

degrades its performance down according as written data 

in HDFS is increased. That indicates, RAID-5 supported 

by a RAID controller is superior on a lower load, and 

parallel accessing physical disks is superior on a higher 

load. We should have used much larger amount of data to 

point out specifically the advantage of the new cluster. 

As to the combination of Data Block Encoding and 

compression algorithm, diff and fast_diff in Data Block 

Encoding have superior compression ratios and also have 

superior writing speed. Because we generate data from 

random values and the data almost always changes, it 

results in the compression ratio of diff being a little higher 

than that of fast_diff, although we expect fast_diff is more 

effective in the actual usage in J-PARC, where there would 

be many unchanged data to be recorded. Snappy and LZ4 

prefer compression speed to compression ratios, but when 

applying diff or fast_diff we just find they have no effect to 

compress and waste time. On the other hand, GZ is said 

that it has the same compression speed as a fraction of that 

of Snappy and LZ4, but we don't find out such a 

disadvantage in our result. That would be because our 

hardware has much faster CPU in comparison with I/O.  

In summary, our measurement result suggests that the 

new cluster has more scalability to the amount of data than 

the old cluster, but we should have used much larger data 

in order to point out specifically. Applying diff or fast_diff 

in Data Blocking Encoding is quite effective for our table 

design. Under applying either of them, only GZ is 

meaningful as compression algorithm. 

CONCLUSION 

We have archived to establish the procedure to construct 

a cluster of the practical use level. Now we are planning 

update the version of HBase, Hadoop and ZooKeeper. 

Because we had experience of being involved in troubles 

of their version compatibility, before everything we have 

just place the focus about making clear the procedure. 

Having achieved the goal, we are ready to update their 

versions, and adjust and fix. 

We have made the data store redundant, but we also have 

to make the data capture tool redundant, otherwise it 

becomes a single point of failure from the viewpoint of 

data capture. It will be natural to use ZooKeeper currently 

working with Hadoop and HBase to select active/standby 

states of the redundant data capture tool. 
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