
DEVELOPMENT OF THE J-PARC TIME-SERIES DATA ARCHIVER

USING A DISTRIBUTED DATABASE SYSTEM, II

N. Kikuzawa#, H. Ikeda, Y. Kato J-PARC, Tokai-mura, Naka-gun, Ibaraki, Japan

A. Yoshii, NS Solutions Corporation, Shinkawa, Chuo-ku, Tokyo, Japan

Abstract
J-PARC (Japan Proton Accelerator Research Complex)

consists of Linac, 3 GeV rapid cycling synchrotron ring
(RCS) and Main Ring (MR). In the Linac and the RCS,
data of about 64,000 EPICS records have been acquired for
control of these equipment. The data volume is about 2 TB
every year, and the total data volume stored has reached
over 12 TB. The data have been being stored by a
Relational Database (RDB) system using PostgreSQL
since 2006 in PostgreSQL, but it is becoming that
PostgreSQL is not enough in availability, performance, and
flexibility for our increasing data volume. In order to deal
with these problems, we proposed a next-generation
archive system using Apache Hadoop, a distributed
processing framework, and Apache HBase, a distributed
database.

In this paper we are reporting that we have re-designed
and re-constructed the cluster with resolving some issues,
including enhancing hardware of master nodes, creating
scripts to automatically construct nodes, and introducing
monitoring tools for nodes. Having adjusted the
configurations of HBase/Hadoop and measured the
performance of our new system, we are also reporting its
results and considerations.

INTRODUCTION

J-PARC is controlled with a lot of equipment, and we
have been archiving a time series of operation data
provided from about 64,000 EPICS records for the Linac
and the RCS since 2006 [1]. PostgreSQL has been used in
the present data archiving system, but it has some problems
of capacity, extensibility, and data migration. In order to
deal with these problems, we proposed a next-generation
archive system [2][3] using Apache Hadoop [4], a
distributed processing framework, and Apache HBase [5],
a distributed database.

In the previous paper we reported that we updated the
versions of HBase/Hadoop composing our test system [6],
to conquer a single point of failure by making redundant a
master node, and we showed issues to fix our tools in the
new system. Having adjusted the configurations of
HBase/Hadoop and measured the performance of our new
system, we are also reporting its results and considerations.

RECONSTRUCTION OF THE CLUSTER

Replacement Master Node

 We have updated Hadoop to the version 2.2.0 now.
Hadoop 2.x provides a hot standby NameNode, which can
take over the state that the previous active NameNode has

provided, with no downtime. At least three master nodes
are needed for this function to deploy ZooKeeper [7] and
JournalNode. ZooKeeper is a high-performance
coordination service for distributed applications, and both
Hadoop and HBase depend on. JournalNode is one of the
components of Hadoop. ZooKeeper and JournalNode are
based on a majority decision among nodes, and it is
meaningful to deploy them on an odd number of machines.
We replaced the master node 2 and 3. The layout of the
system is illustrated in Figure 1 and the spec of our system
is listed in Table 1.

When the master nodes has been replaced, processes of
Hadoop has been relocated, and memory allocation has
been reconsidered. The allocation of memory shows in
Table 2.

Figure 1: The archiving system configuration.

Table 1: Spec of Hadoop and HBase System

Master
Node 1

DELL PowerEdge R610
CPU: Intel Xeon E5620 (4Core, 2.4GHz)
MEM: 24GB
HDD: 600GB x4 (RAID10)

Master
Node 2, 3

DELL PowerEdge R320
CPU: Intel Xeon E5-1410v2 (4Core, 2.8GHz)
MEM: 24GB
HDD: 600GB x4 (RAID10)

Slave
Node

DELL PowerEdge R410
CPU: Intel Xeon E5620 (4Core, 2.4GHz)
MEM: 24GB
HDD: 2TB x4

Software OS: CentOS6.6

Hadoop: 2.2.0

HBase: 0.96..1.1

ZooKeeper: 3.4.5 ___

#kikuzawa.nobuhiro@jaea.go.jp

WEPGF052 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

818C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management, Analytics & Visualisation

Table 2: Memory Allocation (GB)

Master Node 1 2,3 Slave Node

ZooKeeper 1 1
Name Node 8 Data Node 1

ZKFC 1
Journal Node 1 1
Resource
Manager

1 Node Manager 1

History Server 1 YARN container 6

HBase Master 4 Region Server 12

total 4 15 total 20

RAID and Mount Option

It is common sense to use non-RAID for slave nodes in
Hadoop. The redundancy of data in Hadoop is made by
holding the same data in several slave nodes, and RAID
cannot be an alternative for the Hadoop's redundancy
because RAID just makes HDD redundant, not for the
whole node. In place of the hot-swap function we can use
automatic scripts to construct from scratch. It is also said
that, a Hadoop cluster constructed with non-RAID is faster
than a one with RAID-0 because RAID-0 makes physical
disks keep pace with the slowest one of them.

In the previous presentation, we constructed the slave
nodes with RAID-5 with 4 physical disks. We have decided
to follow the Hadoop common sense and have changed
RAID-5 to non-RAID. To be exact, our RAID controller
cannot handle non-RAID, and we have constructed RAID-
0 for each one disk. Ironically, that gives us an advantage
that we can still use battery backed-up memory in the
RAID controller.

We use ext4 for the file system on the OS, which ext4 is
a standard format in Linux these days. As to mount options,
although Hadoop makes data redundant, we have chosen
options to ensure persistence of data for a rainy day, for
example, in the case that all nodes lose power supply all at
once, with the exception that we invalidate I/O barrier
because of battery backed-up memory in the RAID
controller, as described above. We use ordered for the
journal mode in order to shut out the possibility to see
invalid data when it crashes, which setting is enough
because Hadoop doesn’t support random access and
consequently it doesn’t overwrite existing data. Our
versions of ZooKeeper, Hadoop and HBase support Java6,
which means dirsync is required because Java6 doesn’t
support fsync on a directory. To tell the truth, we
overlooked that the slave nodes in Hadoop don't invoke
fsync unless we set the Hadoop configuration property
dfs.datanode.synconclose to be true, which property is
hidden from the document. The performance test described
later was done before we found it out.

Attribute of HBase

 Data compression is a presupposition of HBase. There
are two compression layers. The one is Data Block
Encoding, which has been introduced since HBase 0.94,
and it compresses sequential records by just storing the
difference between records. The other is generally used

compression algorithm like Snappy, which is applied after
Data Block Encoding. Data Block Encoding is effective
especially for the keys are relatively much larger than the
corresponding values, and that compression matches our
table design. We are showing what combination of Data
Block Encoding and compression algorithm is best, in the
performance test described later.

HBase can apply a bloom filter to search for data. HBase
should search several files, and applying a bloom filter
beforehand narrows down the files, at the cost of a little
increasing the resource usage. This setting is a table
attribute, and by default it is enabled for record keys.
Bloom filters are not applied to extract records with a range
condition while such a way is the only one we assume to
search records, and we have decided to invalidate a bloom
filter and avoid wasting its resource usage.

HBase prepares Block Cache for millisecond order
latency. When Block Cache is enabled, data blocks once
read from a disk are cached in memory. The cache itself is
shared per region server, while it is per table whether Block
Cache is used or not for the table, and this setting is a table
attribute. As to our purpose, we assume to always get much
data at once, and such a large data would be cached in
client-side. The clients are not so many, and the data is
rarely requested again. And moreover, by default, Block
Cache can use 40% of the maximum heap and it might
reduce the performance by consuming a lot of heap with
frequently triggering GC. Because of these reasons we
have decided to invalidate Block Cache.

Cluster Management
In order to monitoring servers we use Nagios, which is a

mature tool and widely used in Linux servers. In Nagios
anomaly detectors are introduced as plugins, and Nagios
itself manages to schedule to trigger the detectors and
notify users by e-mail if any.

Nagios is designed to use e-mail for notification, but our
cluster is on the LAN which is basically separated from the
outer network, and sending an e-mail to the mail server on
the outer network is blocked off. For now we just explicitly
login the node the Nagios is deployed on, and check by
parsing the file that Nagios generates at fixed intervals for
a web application, or run an automatic script to do the same
things.

Some standard Nagios plugins, including pinging to
servers, are formally distributed as a set. For other plugins
you should write a script or something by yourself, or
download from trusted web sites. We use two such
convenient external plugins, check_ipmi_sensor and
check_openmanage. Both is for collecting remote
hardware status, but check_ipmi_sensor does via IPMI
using a tool freeipmi, which comes from the installation
disks of Linux OS, and check_openmanage does via
SNMP using Dell OpenManage. They are similar but each
has its merits and demerits. In order to monitor modules in
ZooKeeper, Hadoop and HBase, we have created scripts as
Nagios plugins, using the command jps in JDK for
checking existence of Java processes, and invoking a query
via socket communication if any. They just emulate the

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF052

Data Management, Analytics & Visualisation

ISBN 978-3-95450-148-9

819 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

procedures to check the modules by hand, and we would
easily grasp what happens.

In addition, we have installed Ganglia [8], which was
also installed in the old cluster. Ganglia collects numerical
data, which differs from Nagios, and Ganglia would be
suitable to detect unusual CPU or resources usages, or to
tune the performance. Ganglia has an attractive feature of
using multicast so that a lot of monitoring targets don't
inflict a heavy load on the network.

Automatic Scripts to Construct Nodes

We have created the kickstat file to install and configure
OS and required software packages coming from the
installation disks, and have created a set of installation files
to install and configure the rest of the required packages,
in line with the views we have described above.

It would be preferable to construct a node automatically
from start to end, but we should manually set up SSH keys
or security concerns, and set up configurations to get
hardware status via IPMI or about local environment
dependent concerns.

PERFORMANCE TESTS

We measured the performance of registration and

acquisition of records based on the assumption of actual

usage in J-PARC, which is not intended for the general

situation. We measured both the old cluster and the

reconstructed new cluster.

Conditions

For the measurement of registration of records, we

assume that there would be 10,000 EPICS records and we

should regularly get a record at one second intervals from

each EPICS record. We put records for one day into our

cluster without stops and we measure its consumption time,

and we repeat the same things 5 times in a row. Because

each record is very small, in actual usage in J-PARC we

should use a buffer to send many records together.

According to this assumption we invalidate auto-flush and

explicitly invoke flush at the end, and we count the

consumption time till the flush is complete. We create

random names as EPICS records, which is 30 characters

randomly selected from 52 uppercase and lowercase

alphabetical letters. We generate data from random double

precision values, selected from 0.0 (inclusive) to 1.0

(exclusive). Splitting regions in advance is generally

preferable for HBase, although it is not trivial in our actual

usage, and we expect that the balancer wakes up regularity

and automatically splits and moves regions between nodes

with distributing loads. As to the performance

measurement, because we execute it in a short period and

we should not expect the balancer, we pre-split regions and

distribute loads from the beginning. To put it concretely,

we assume that the randomly generated names are equally

distributed in the name space, and equally divide the space

by the first character of the names into regions whose

number is same as that of our region servers.

For the measurement of acquisition of records, we make

use of the environment after the measurement of

registration. Assuming that there are 5 clients

simultaneously connecting to the cluster, we use 5 threads

and make each thread retrieve records for one random day

for 10 random channels, and we measure its consumption

time for each thread. HBase would not be designed for such

acquisition; HBase gives priority to low latency, which is

against to Hadoop which gives priority to throughput.

Moreover, for data acquisition many clients' random

accessing is suitable for HBase because it well distributes

loads to multiple regions servers, improving its overall

performance advantage. Despite these features, we are still

interested in the performance of a few clients accessing

large sequential data, along the assumption of actual usage

in J-PARC.

As to buffers in client-side, we use the default size of the

write buffer, which is 2MB, and we use 20,000 records for

the read cache, which corresponds to 2MB if we count 100

bytes for one record.

As described before, we examine what combination of

Data Encoding Block and compression algorithm is best

for our table design. To put it concretely, we examine

{none(non-use), diff, fast_diff} for Data Encoding Block,

and examine {none(non-use), GZ, Snappy, LZ4} for the

compression algorithm.

Results

The results of the performance measurement are shown

in the following tables and figure. Table 3 shows the

consumption time to register data for one day, averaging

the times measured repeatedly 5 times in a row. Figure 2

shows its transition instead of averaging in the case of the

compression combination none-none. Table 4 shows the

consumption time to retrieve data, averaging the times for

threads. Table 5 shows the total amounts of data written in

the Hadoop distributed file system (HDFS), which are

measured in the new cluster but theoretically they rather

depend on the combination of Data Block Encoding and

compression algorithm.

Figure 2: Write time in the none-none Case (min).

WEPGF052 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

820C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management, Analytics & Visualisation

Table 3: Write Test (min)

 none GZ Snappy LZ4

old cluster

none 102.3 59.0 64.3 64.8

diff 57.4 54.0 58.9 59.4

fast_diff 56.7 55.9 58.5 58.8

new cluster

none 81.9 77.6 74.9 80.8

diff 67.6 68.6 75.4 87.3

fast_diff 69.0 71.7 76.4 71.4

Table 4: Read Test (sec)

 none GZ Snappy LZ4

old cluster

none 7.3 8.3 8.8 7.1

diff 8.9 10.0 11.0 9.4

fast_diff 7.5 8.9 8.2 9.4

new cluster

none 7.2 8.2 8.0 8.5

diff 9.8 8.5 10.0 11.3

fast_diff 8.6 8.6 9.0 8.3

 Table 5: Sum of Stored Files (GB)

 none GZ Snappy LZ4

none 286.2 64.1 80.5 76.7

Diff 53.1 47.3 52.9 53.1

fast_diff 53.8 48.7 53.8 53.9

Consideration

For the measurement of registration of records, the old

cluster writes data 20-40% faster except the case of none-

none, where the total amount of data written in HDFS is

extremely larger than the other cases and the old cluster

degrades its performance down according as written data

in HDFS is increased. That indicates, RAID-5 supported

by a RAID controller is superior on a lower load, and

parallel accessing physical disks is superior on a higher

load. We should have used much larger amount of data to

point out specifically the advantage of the new cluster.

As to the combination of Data Block Encoding and

compression algorithm, diff and fast_diff in Data Block

Encoding have superior compression ratios and also have

superior writing speed. Because we generate data from

random values and the data almost always changes, it

results in the compression ratio of diff being a little higher

than that of fast_diff, although we expect fast_diff is more

effective in the actual usage in J-PARC, where there would

be many unchanged data to be recorded. Snappy and LZ4

prefer compression speed to compression ratios, but when

applying diff or fast_diff we just find they have no effect to

compress and waste time. On the other hand, GZ is said

that it has the same compression speed as a fraction of that

of Snappy and LZ4, but we don't find out such a

disadvantage in our result. That would be because our

hardware has much faster CPU in comparison with I/O.

In summary, our measurement result suggests that the

new cluster has more scalability to the amount of data than

the old cluster, but we should have used much larger data

in order to point out specifically. Applying diff or fast_diff

in Data Blocking Encoding is quite effective for our table

design. Under applying either of them, only GZ is

meaningful as compression algorithm.

CONCLUSION

We have archived to establish the procedure to construct

a cluster of the practical use level. Now we are planning

update the version of HBase, Hadoop and ZooKeeper.

Because we had experience of being involved in troubles

of their version compatibility, before everything we have

just place the focus about making clear the procedure.

Having achieved the goal, we are ready to update their

versions, and adjust and fix.

We have made the data store redundant, but we also have

to make the data capture tool redundant, otherwise it

becomes a single point of failure from the viewpoint of

data capture. It will be natural to use ZooKeeper currently

working with Hadoop and HBase to select active/standby

states of the redundant data capture tool.

REFERENCES

[1] S. Fukuta, et al., “Development Status of Database for
J-PARC RCS Control System (1)”, Proceedings of the
4th Annual Meeting of Particle Accelerator Society of

Japan, August 2007.

[2] A. Yoshii et al., “J-PARC operation data archiving

using Hadoop and HBase” Proceedings of the 9th
Annual Meeting of Particle Accelerator Society of

Japan.

[3] N. Kikuzawa et al., “Development of J-PARC

TimeSeries Data Archiver using Distributed Database

System”, Proceedings of ICALEPCS2013.
[4] http://hadoop.apache.org/

[5] http://hbase.apache.org/

[6] N. Kikuzawa et al., “Status of Operation Data
Archiving System using Hadoop/HBase for J-PARC”,
Proceedings of PCaPAC2014.

[7] http://zookeeper.apache.org/

[8] http://ganglia.sourceforge.net/

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF052

Data Management, Analytics & Visualisation

ISBN 978-3-95450-148-9

821 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

