
SCALABLE WEB BROADCASTING FOR HISTORICAL INDUSTRIAL
CONTROLS DATA

B. Copy, O. Andreassen, P. Gayet, M. Labrenz, H. Milcent, F. Piccinelli
CERN, Geneva, Switzerland

Abstract
With the widespread adoption of asynchronous web

communication, thanks to WebSockets and WebRTC [1],
it has now become possible to distribute industrial
controls data (such as coming from devices or SCADA
software) in a scalable and event-based manner to a large
number of web clients [2] in the form of rich, interactive
visualizations. There is yet, however, no simple, secure
and performant way to query large amounts of aggregated
historical data.

This paper presents an implementation of such an
architecture, which is able to make massive quantities of
pre-indexed historical data stored in ElasticSearch
available to a large number of web-based consumers
through asynchronous web protocols. It also presents a
simple, Opensocial-based [3] dashboard architecture that
allows users to configure and organize rich data
visualizations (based on Highcharts Javascript libraries)
and create navigation flows in a responsive, mobile-
friendly user interface.

Such techniques are used at CERN to display
interactive reports about the status of the LHC
infrastructure (e.g., Vacuum and Cryogenics installations)
and give access to fine-grained historical data (such as
stored in the LHC Logging database [4]) in a matter of
seconds.

THE CERN ENGINEERING DASHBOARD
The CERN Engineering Dashboard is primarily a data

streaming facility, giving secure and scalable web-based
access to live, critical data coming directly from the
CERN Accelerator infrastructure.

The CERN Engineering Dashboard also promotes the
usage of modern, standards-based data visualizations,
leveraging the best open web standards (e.g., CSS 3,
HTML 5, SVG), thereby ensuring that the solution can
cope with technological debt and clearly separate the data
broadcasting mechanism from the way data is rendered.

Figure 1 below gives an overview of the Broadcasting
Dashboard architecture, allowing the scalable distribution
of both live and historical data and the rendering of said
data through modular and reusable visualizations.

STREAMING HISTORICAL DATA
While our previous publication on the topic of web

broadcasting (MOPPC145 [1]) focused on the ability to
stream live data, the CERN Engineering Dashboard
project has aimed for the past two years to provide the

same functionality for historical data, introducing in the
process a whole new set of challenges:

• Instantly retrieving and serving large amounts of
data, instead of atomic values, while still being
able to serve in the vicinity of one thousand web
clients concurrently.

• Aggregating data on the fly so that mobile clients
are not submerged with unnecessary information
that they will, in any case, be unable to display
on a small viewport.

• Not making any assumptions on the data at hand,
yet still providing efficient indexing and filtering
capabilities.

Over the course of this project, it soon became obvious
that traditional data storage techniques, such as relational
databases, were insufficient:

• Connections to relational databases must usually
be pooled (about a dozen concurrent connections
are tolerated on the central CERN Oracle
database); serving the needs of thousands of
clients concurrently was not possible.

• Relational data access times impose dedicated
connection drivers and too much latency, and
transmitting this data over the web imposes yet
more delay and processing cost in data format
translation.

A new generation of data storage solutions, identified
under the umbrella term “NoSQL,” has emerged in the
past few years. NoSQL solutions (thus coined for their
breaking free from traditional SQL relational data storage
constraints) rely on asynchronous, massively parallel
processing and cloud clustering techniques in order to
address the aforementioned requirements.

NOSQL DATA STORAGE SOLUTIONS
 There are several NoSQL data storage solutions on the

market at present. Our goal was to identify a solution that:

• was web-friendly, could natively communicate
via HTTP, and support a query language as
expressive and feature-capable as SQL;

• could operate in cluster mode, so as to increase
availability and support data partitioning;

• could integrate with online processing
frameworks such as Apache Storm;

WEPGF042 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

790C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management, Analytics & Visualisation

• and would be able to natively manipulate the
JSON data format, which is currently used by
our web broadcasting framework.

Among the multitude of options available, the open-
source solution ElasticSearch [5] fulfils all of the above
criteria and benefits from a very strong momentum from
large Internet companies and its developer community.
Able to operate in isolation or as part of a cluster, it is also
extremely easy to embed in any unit tests or integration
tests, making it much more comfortable than a
monolithic, relational database with regards to
development.

Using ElasticSearch, we can store a moderate amount
of LHC activity data (typically forty days of history), that
we can aggregate on the fly, so as to serve end-users with
only the appropriate amount of information suitable for
their browsing platform, while retaining the initial
expressiveness of the source data.

INTUITIVE NAVIGATION AND
REUSABLE VISUALIZATIONS

While ElasticSearch features a data visualization
technology called “Kibana,” an online web tool that
allows one to create dashboards interactively, it suffers
from several important shortcomings:

• Visualizations inside Kibana cannot be
integrated into another website – they must run
inside a Kibana portal interface;

• Kibana is very much focused on ElasticSearch
monitoring – it offers a limited number of
visualizations that are mostly suitable for line
charts, data tables, and tag clouds.

• Extending Kibana with custom visualizations is
difficult, and would, in any case, not comply

with any web standards, thereby forcing one to
develop Kibana-only data visualization modules.

There are, however, existing web standards for contents
reuse, such as Opensocial, which defines the concept of
Gadget, a page fragment that can be parameterized and
dropped into any web page (provided certain security
constraints are respected).

We therefore developed all our data visualizations as
Opensocial gadgets. Even when combining multiple
visualizations into a single page layout, each gadget can
be easily extracted and reused in another, unrelated
website while preserving its interactivity and appeal.

Data visualizations offered by the Engineering
Dashboard include Scalable Vector Graphics (to bind data
to scalable, vectorized diagrams that offer a pixel-perfect
rendering at any display size), Image streaming (to stream
bitmap images such as camera captures or screenshots),
Highcharts (to display data in a large variety of
interactive, zoomable charts), and Impact tree (to render
hierarchical, tree-like data and support simple root cause
analysis).

DASHBOARD USER INTERFACES
Unfortunately, offering single, isolated data

visualizations is not sufficient to provide a comfortable
browsing and analysis user experience. Visualizations
typically need to be combined, offering different
perspectives over the same data (for example, in the LHC
cryogenic systems to compare the global temperature
versus time of a given sector in a line chart against a
temperature profile of individual equipment).

The Engineering Dashboard uses the concept of page,
employing a layout to arrange gadgets dynamically on the
screen. Since the Dashboard project targets mobile
devices, layouts must be responsive [6], that is,
automatically adaptable to a range of screen geometries.

Figure 1: Broadcasting Dashboard architecture

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF042

Data Management, Analytics & Visualisation

ISBN 978-3-95450-148-9

791 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

The Dashboard's responsive layout implementation
relies on the popular Bootstrap [7] framework, which
offers a grid abstraction, making it possible to express the
most complex layouts in terms of extensible columns and
cells, coping gracefully with any display size ratio.

Figure 2 below provides an example of visualization,
(available at http://dashboard.web.cern.ch/LHC).

Figure 2: Dashboard view of LHC experiments luminosity history

CLUSTERING AND FAILOVER SUPPORT
Another phase of improvements to the CERN

Engineering Dashboard has been the search for a
clustering and high-availability solution. To this day, the
central CERN web hosting infrastructure does not support
high-availability beyond the usage of simple DNS round-
robin practices (for example, if three web servers have
been defined as part of a cluster then every third request
will be sent to the same server; this practice provides
basic load-balancing, but no redundancy).

A simple workaround, and a great way to provide high
availability and scalability, is simply to bypass altogether
the restrictions of traditional web development (relying on
Apache web server proxy definitions and HTTP sessions)
by adopting a data grid technology [8]. Data grids extend
the concept of random-access memory (RAM) by
distributing it over a high-speed network. Data grids are
transparent to the application programmer, who employs
familiar data structures – such as maps, arrays, queues,
locks, and even ring buffers – as if they were in local
memory. In a data grid, all these data structures are
distributed and synchronized across multiple hosts via
low-latency data exchanges.

In-memory data grids constitute an ideal way of making
our data broadcast service scalable and resilient to failures
by maintaining, in a distributed manner, the entire state of
data distribution, that is:

• the state of client subscriptions (i.e. “who needs
what?”);

• the availability, health statistics, and heartbeat of
broadcasting agents;

• the publication-subscription channels that are
currently active;

• last known value cache (no need to re-query the
data source if nothing has changed);

• and even supporting the archiving of live data
into queues that can later be indexed in a NoSQL
data storage.

After a period of evaluation and research, the
Engineering Dashboard project adopted Hazelcast [8] as
its in-memory data grid implementation. Hazelcast [9] is a
high-performance, open-source data grid library that
proves extremely simple to use: adding it to any Java
application immediately enables a data grid cluster.

Thanks to clustering support from Hazelcast, our
broadcasting infrastructure can go from accommodating
five hundred concurrent clients from a single server to
transparently accommodating five hundred clients over N
nodes, without a complex reconfiguration, a code rewrite,
or even requiring the restart of any part of the
broadcasting cluster.

CONCLUSION AND PERSPECTIVES
Advances made in the past few years in the matters of

Java clustered data storage and in-memory data grid
technologies have made affordable the deployment of

WEPGF042 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

792C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management, Analytics & Visualisation

large and scalable data distribution media, such as the one
used by the CERN Engineering Dashboard.

The reuse of web content, however, is still a field in
mutation:

• Security issues continue to plague the World
Wide Web and content reuse is only supported
by software vendors insofar as it is done within
their own social platform. For example,
Microsoft Social and Facebook still do not allow
the data visualization mechanisms they provide
to be used in the context of other web hosting
products. Importing their data into another web
site implies relying on their proprietary data
formats and protocol specifications, even if open
alternatives are readily available.

• Over the past year, Opensocial, as a social data
exchange and visualization platform, has been
abandoned by Google and converted into a W3C
working group (most likely opening an era of
lengthy specifications and recommendations that
will be ignored by major web companies).

The emergence of a new web standard entitled “Web
Components” [10] is, however, poised to revitalize web
content reuse and offer a widely accepted method of
implementing content sharing. Already supported on all
major web browsers, Web Components offers the right
balance between the ease of usage and the implementation
of strict content separation and code security practices.

The CERN Engineering Dashboard is certainly bound
to explore the capacities of this social technology, as a

means of overcoming the artificial boundaries imposed by
software vendors in the free exchange of data and
interactive data visualization gadgets.

REFERENCES
[1] H. Hickson, “Real-time communication between

browsers”, Feb 2015, W3C working group,
http://www.w3.org/TR/webrtc/

[2] B. Copy et al., “Mass-Accessible Controls Data for
Web Consumers”, MOPPC145, Oct 2013,
ICALEPCS’13, San Francisco, USA

[3] T. Çelik, “Opensocial and the Social Wg”, July 2014,
W3C working group, http://www.w3.org/Social/WG

[4] C. Roderick et al., “The LHC Logging Service”,
WEP005, Oct 2009, ICALEPCS'09, Kobe, Japan

[5] S. Banon, “ElasticSearch: you know, for search”, 12
June 2012, http://thedudeabides.com/articles/you-
know-for-search-inc

[6] E. Marcotte, “Responsive Web Design”, May 2010,
http://alistapart.com/article/responsive-web-design

[7] M. Otto, “Bootstrap from Twitter”, 17 January 2012,
http://www.markdotto.com/2012/01/17/bootstrap-in-
a-list-apart-342

[8] J. Belzer et al, “Very large data base systems to zero-
memory and Markov information source”,
Encyclopedia of computer science and technology,
Vol. 14, 1980, Dekker, New York, USA

[9] T. Ozturk, “Clustering your application with
Hazelcast”, 16 Dec 2013, JAXLondon Conference,
London, UK

[10] D. Glazkov and H. Ito, “Introduction to
Webcomponents”, 24 July 2014,
http://www.w3.org/TR/components-intro/

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF042

Data Management, Analytics & Visualisation

ISBN 978-3-95450-148-9

793 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

