
DATA DRIVEN SIMULATION FRAMEWORK

Amar Banerjee, Subhrojyoti Roy Chaudhuri, Puneet Patwari, TRDDC, Pune, India
Lize Van Den Heever, SKA South Africa, Cape Town, South Africa

Abstract
Control systems for radio astronomy projects such as

MeerKAT[1] require testing functionality of different
parts of the Telescope even when the system is not fully
developed. Usage of software simulators in such scenarios
is customary. Projects build simulators for subsystems
such as dishes, beam-formers and so on to ensure the
correctness of a)their interface to the control system
b)logic written to coordinate and configure them.
However, such simulators are developed as one-offs, even
when they implement similar functionality. This leads to
duplicated effort impacting large projects such as Square
Kilometer Array[2]. To mitigate this we leverage the idea
of data driven software development and conceptualize a
simulation framework that reduces the simulator
development effort to: 1)capturing all the necessary
information through instantiation of a well-defined
simulation specification model 2)configuring a reusable
engine that performs the required simulation functions
based on the instantiated and populated model provided to
it as input. We discuss the results of a PoC for such a
simulation framework implemented in the context of
Giant Meter-wave Radio Telescope[3] in this paper.

INTRODUCTION

Large projects that involve implementation of large
hierarchy of control systems generate dependencies across
the controllers to be developed and as a result on the
teams developing them. This inter-dependency creates
problems in the verification of controllers developed
across teams since the individual teams follow their own
time-lines which often are not well synchronized.

A general solutions to this problem is replacing the
missing components with simulators to aid the
verification of the dependent components. This however
increases the effort to manually develop the simulators
which also at times results in duplication of efforts.

Although the need for simulators in such scenarios
seem to be essential, it is desired to reduce the cost of
building such simulators since it might impact the overall
cost of projects such as Square Kilometer Array(SKA)
significantly, as such projects have large number of
modules.

With the proposed simulation and testing framework it
becomes possible to achieve the goal of verification of
the module with simulation, following the model driven
approach. The framework incorporates meta models of
the controller node, the simulator and testing based on

which it automatically generates the simulators. Much of
this information is derived from the Self Description Data
(SDD) which contains description of the Controller to be
developed.

In this paper we discuss the simulator and test
framework, the architecture and the working of the
framework.

The paper starts with a discussion on standard practice
involved in control system testing and verification using
MeerKAT as the Case study. It is followed by the
architecture section where we describe our understanding
and design of the framework. In the final section we
present a proof of concept showing the use of our
simulation framework. This is followed by a conclusions
section where we describe the conclusions of our work.

STANDARD PRACTICE

MeerKAT Case Study
One of the development practices of the MeerKAT

CAM (Control and Monitoring) team was to use a fully
simulated system at all times. The MeerKAT CAM team
has been using simulators extensively and continuously
for development, testing and qualification of the CAM
subsystem functionality throughout the MeerKAT project
life-cycle, since the early days of Fringe Finder for the
very first two antennas in the Karoo, through KAT-7[4] to
this day for MeerKAT with each array release. It is
possible to run a MeerKAT CAM configuration including
only simulated devices, or any combination of real and
simulated devices combined. This allows full software
development, unit testing, integration testing, and CAM
subsystem qualification without any dependency on the
hardware being available.

While the CAM team was responsible for developing
most of the simulators, some of these device simulators
were contractually delivered by the subsystem contractor
to ensure that, given their knowledge of the device, the
behaviour of the device is reflected with sufficient
accuracy by the device simulator. In cases where the
subsystem contractor did not deliver such a simulator, the
CAM team developed a software simulator for the
KATCP interface. Preparing the simulators gave the CAM
team a valuable opportunity to gather information about
the behaviour of the other subsystems even before those
subsystems have been fully developed and are ready for
integration.

Each simulator represents the specific messages on
KATCP (KAT Control Protocol) interface for a subsystem
(commands/requests and monitoring points/sensors), as

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF025

Control System Infrastructure

ISBN 978-3-95450-148-9

749 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

well as simulating the expected behaviour of the module
when commanded through the control-and-monitoring
interface, including maintaining state and mode and
reflecting current state in monitoring points. Each
simulator also provides a test interface that is used to
stimulate the simulator to affect responses and outcomes,
alarms and failure conditions.

This approach has been extremely beneficial for the
MeerKAT CAM development, but the simulators can be
improved by providing a simulation framework that can
be personalised for each specific interface by using data-
driven specification of the interface instead of writing
each simulator manually and keeping it up to date
separately. An additional improvement would be to extend
the simulation framework with a standard behaviour
extension module that can also be personalised through a
data-driven behaviour specification. This could include
specifying the timing taken by commands before
responding, specifying interrelations between commands
and reflecting the outcome in monitoring points, and also
to relate commands to one another. To explore the
benefits of these improvements a POC (Proof of Concept)
has been developed by TRDDC on the GMRT with a
possible approach to a data-driven simulation framework.

 PROPOSED ARCHITECTURE

Simulation Specifications Model

As Fig. 1 explains the abstract controller simulator

model comprises of 2 parts :-
1)Software Emulator and
2)Hardware Simulator.

The analysis of this model leads to gathering
requirements for the simulation and testing framework.

From the figure, the information that form the part of
the controller simulator are grouped as

a) details such as commands, responses, events,
alarms and data

b) communication protocols and protocol
translation rules,

c) behavioral specifications such as state machines
d) specific input related to simulation such as

simulated responses, data stream, simulation of the
behavior of the underlying infrastructure such as
unexpected responses, streams

e) skeleton structure of the implementation of the
code.

The idea is to capture all these items as a part of the
simulator model so that an environment can be provided
to capture these information in a structured manner. This
provides all the key requirements that the simulation and
testing framework needed to support.

Architecture
Using the Model Driven Engineering philosophy, we

provide as part of this framework aDomain Specific
Language (DSL) MnC&ML[5] to capture all the above
information. We term an instance of such information
captured for a controller node as the Self-Description Data
(SDD) for the controller node. Hence an SDD instance
can capture all the key information pertaining to a
controller that is not ready yet but is required to be
simulated.

The high level architecture of the framework is
provided in Fig. 3 and the information related to the
implementation of the same such as the technology stack
used and so on can be seen from Fig. 4.

From the instantiated model or SDD the framework
then code generates the controller/software simulator,
hardware simulator and the test suit to test the simulator
itself.

The test suit acts as a driver and calls the functionality
of the controller and the simulator provides with a
suitable simulated reply. The controller node which needs
to be tested can then be connected to the simulator to then
carry on with the testing of the controller node.

As can be seen from the figure below, the environments
help to create the different parts of the models:-

Figure 2: Role of Environments.

Figure 1: Simulator Model and Test Suite Model.

WEPGF025 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

750C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Infrastructure

• Development Environment – A controller

model is instantiated by the development environment
and captures the behavioral and skeletal properties of a
controller node like commands, events, alarms, state
machine logic etc. These properties are desired to create
the software emulator for the controller node. This
environment is developed as a plug-in for Eclipse using
modeling tools such as EMF[6] and XText[7].
• Simulation Specification Environment – A

simulator model is captured by the simulation
specification environment and captures the specification
required to simulate the behavior of the underlying
hardware. The environment gathers specifications such as
expected and unexpected responses to corresponding
commands, selection of patterns to generate the sensor
data such as sine wave and so on, the time lag to generate
two consecutive sensor data values, the number of values
to be skipped before generating the next sensor data
value. These details inject realistic behavior into the
generated simulator. Since these specification items do
not form a part of the SDD of a controller they are
captured separately through this environment This
environment is implemented as a plugin for Eclipse using
EMF framework and with building custom UI.
• Test Specification Environment – A test model

gets instantiated by the test environment to capture the
test scenarios involved to test the simulator itself. It reuses
the information from the SDD such as expected response
to commands, response validation rules and so on to
automatically generate the test cases. It also injects some
specific test conditions which force the simulator to act in
a specified manner to obtain specific test results. The test
environment is generic in the sense that it could also be
used to test an actual controller and not necessarily only a
controller simulator. This environment could incorporate
algorithms to make sure that it generates all the
exhaustive test cases to test a particular controller or

hierarchy of controllers. This environment is
implemented as a plug-in for Eclipse using EMF
framework and with building custom UI.

 After populating these models the environments
automatically generates the code based on the instantiated
models.
• Controller/Software Emulator – The controller

emulator is generated by the development environment
utilizing the details specified in the SDD. This controller
simulator implements the functionality described in the
SDD in form of an executable JAVA file utilizing the
APIS’ from the TANGO[8] framework.

• Hardware Simulator – The hardware simulator
generated by the Simulator environment, incorporates the
details captured by the Simulation model through the
simulation specification environment. This too generates a
JAVA file which contains mapping of the desired response
to a command and the functionality to generate a raw
sensor data as per the rules provided in the simulation
model.

• Test Suite – The test suite is generated by the
test environment implementing the test scenarios based on
the populated test model. The generated Java code uses
the Junit[9] framework API’s and consists of multiple test
cases for the simulator testing. Each test case is mapped to
five different test conditions provided using the Data
Providers. This makes the test cases run 5 times and tests
the simulator for 5 different conditions. The test case tests
the command of the controller by invoking it with 5
different input data and checks the corresponding
response against an expected response collected as part of

Figure 3 : Technology Stack and Internal Details.

the test model. Hence for N commands of a controller the
total tests performed will be 5N times.

 The envetual goal for this test suite is to perform
exhaustive testing of all features not just limited to
commands. The test case also injects a specific test

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF025

Control System Infrastructure

ISBN 978-3-95450-148-9

751 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

condition where it forces the simulator to generate that
specific response which is pre-populated by the test
model, hence ensuring that every test case has at least one
test condition which gets the desired response and passes
the test case.

PROOF OF CONCEPTS

Giant Meter-wave Radio Telescope
As a PoC we have used the simulation and testing

framework to simulate the controller nodes for one
structural hierarchy of the GMRT as follows:-

In the GMRT control system, an Antenna Node
controls an IF Controller Node, which in turn directly
interacts with the underlying hardware device [provide
reference to GMRT architecture]. In order to try out our
framework, we assumed that the Antenna Node has been
developed and needs testing of its functionality but the IF
Controller is not yet developed With our framework, we
could still create the self descriptions (SDD) of the IF
Controller using our DSL. This file contained the
behavioral and skeletal properties of the IF controller
without having the implementation details and hence
could be created in less than an hour.

Once the DSL is create we generated the controller
software emulator for the IF Controller followed by
generating the hardware simulator. The simulator model
reuses some details in the controller SDD like
Commands, Responses, States, Events etc. and also uses
simulation specific input. We also generated the test cases
for IF Controller Simulator which generates a report upon
the execution of the test cases. . We needed to study the
GMRT system a bit to come up with the required
specifications. But once we had good understating of the
features of the antenna node and the IF controller, the
creation of the individual specs using our framework took
less than an hour.

Using the simulation and test framework for creating a
simulator for an IF Controller led us to the following
observations:-
• Existing knowledge of the control system is

required before creating the simulation specification.

• The use of the framework made it easy to
generate the simulator as creating the specification
required very less time (around 30 mins).

• Manually coding the simulator would have
taken approximately 1-2 hrs, while with the framework it
took only around 15-30 mins to do it, hence a 400 – 800
% efficiency in time consumption
• Test cases made it possible to test the simulation

before actually plugging it in a real developed Antenna
Controller.

• The execution of the test cases results into
testing the dynamic behaviour of the simulator before it
could be made to real use.

CONCLUSION
The MDE approach for implementing the simulation

and test framework can definitely prove more efficient
than the traditional way of manually developing
individual simulators. However, the simulators generated
will still need to be enhanced with appropriate domain
logic Although the generated simulators currently are
standalone and statically configured during compile time.
we want to create an integrated approach which could
make changes to the specification possible during its
execution as well. We also look ahead to create better
methodologies to generate test conditions which would
target the acute cases for simulator testing. The simulation
model now contains minimal necessary features, in future
we wish to provide it with more features so that it would
behave more realistically and show better performance.

ACKNOWLEDGEMENT
We would like to thank Dr. Swaminathan Natarajan, Dr.

Alan Bridger and Dr. Yashwant Gupta for their continuous
support in shaping our thoughts. Also thanks to the GMRT
and SKA South Africa teams for providing their support.

REFERENCES
[1] MeerKAT CAM Design Description, DNo M1500-

0000-006, Rev 2, 2013.
[2] A.R. Taylor, "The Square Kilometre Array",

Proceedings IAU Symposium No. 291, 2012.
[3] Giant Metrewave Radio Telescope,

www.gmrt.ncra.tifr.res.in
[4] KAT-7 (seven dish MeerKAT precursor array)

http://www.ska.ac.za/meerkat/kat7.php

[5] Puneet Patwari, Subhrojyoti Roy Chaudhuri,
Swaminathan Natarajan , G Muralikrishna : M&C
ML: A Modeling Language for Monitoring and
Control Systems.

[6] Eclipse Modeling Framework:
http://www.eclipse.org/modeling/emf/

[7] Lorenzo Bettini, “Implementing Domain-Specific
Language with XText and XTend”, (August 2013)

[8] The Tango Control System Manual Version 8.1 :
www.esrf.eu/computing/cs/tango/tango_doc/kernel
_doc/ds_prog

[9] JUnit : https://www.junit.org/

WEPGF025 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

752C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Infrastructure

