
A PROTOCOL FOR STREAMING LARGE MESSAGES WITH UDP

C. Briegel, Rich Neswold, Mike Sliczniak
FNAL†, Batavia, IL 60510, U.S.A.

Abstract
We have developed a protocol concatenating UDP

datagrams to stream large messages. The datagrams can
be sized to the maximum of the receiver. The protocol
provides acknowledged reception based on a sliding win-
dow concept. The implementation provides for up to 10
MByte messages and guarrantees complete delivery or a
corresponding error. The protocol is implemented as a
standalone messaging between two sockets and also with-
in the context of Fermilab’s ACNet protocol. The result
of this implementation in vxWorks is analysed.

INTRODUCTION
The Fermilab control system [1, 2] required an alterna-

tive to providing large messages. Currently, the user must
piece fragments together to support large messages. An
atomic message needed to be transmitted guaranteeing
delivery and provide the user with an atomic operation.

A working group was formed and discussed several al-
ternatives. The resolution was to support existing proto-
cols but with an extension protocol to concatenate mes-
sages with UDP datagrams. The user would not have to
modify any code and realize a significantly larger mes-
sage size. In comparison with other strategies, the imple-
mentation provided a solution with little impact to the
control system, transparent to the user, minimized risk,
and could be accomplished with minimal effort.

First, the implementation was accomplished as a stand-
alone protocol. A simple interface was established to send
large messages from one node to another with call-backs
when the transmitter or receiver was complete. This min-
imal test solution would provide a base line for perfor-
mance as well as a proof-of-principle for the protocol

Also, the protocol was used to increase the message
size for ACNet [3], the Fermilab control system’s messag-
ing protocol. The added protocol for ACNet was imple-
mented such that all existing protocols could be transpar-
ently supported by large messages. This included re-
quests, replies to requests, and unsolicited messages.

PROTOCOL

The protocol in Figure 1 provides a mechanism to con-
catenate datagrams together. By acknowledging a sliding
window of frames received, the message can be delivered
reliably to the destination. The protocol abides by the
following rules and recommendations:

Figure 1: Large Message Protocol.

Rules
• If the offset is zero, then a new reply is arriving. The

receiver can use the data size field to pre-allocate a
buffer to hold the rest of the incoming data. After
saving the data in the buffer, it sets the next expected
offset to be equal to the size of data that was just re-
ceived.

• If the offset is non-zero, it checks to see if the offset
and transfer ID matches a reply that is in progress. If
a match is found, the data is appended to the buffer
and the next expected offset is updated.

• After appending the data, if the packet also asked for
a response (type code 1 in the long message header),
the task will send a resume message (Figure 2) with
the current expected offset.

• If the offset is non-zero and a reply to a transfer ID is
in progress but the offset is too high (a packet was
dropped), the task waits for a packet that also wants a
reply. When it arrives, a resume message is sent to
the sender with the offset of the missing data.

• When the transfer is complete, the last packet will al-
so require a response. The receiver returns the ex-
pected offset (which at this point will be the size of
the data) or a previous offset, if a packet was
dropped.

Recommendations

• The first segment should use type code 1, asking the
receiver for a resume message. By doing this, part of
the payload gets sent in addition to checking whether
the receiver supports large messages (a timeout indi-
cates no support.)

• The last packet of the message should use type code
1 to make sure the entire message was received.

• The sender may vary the interval between ACK re-
quests to adapt to network conditions. For instance,
the sender might begin the transfer with an interval of
4 packets before asking for an ACK. If there isn’t an
error, then 8 packets can be sent before the next

†
Operated by Fermi Research Alliance, LLC under Contract No.

DE-AC02-07CH11359 with the United States Department of Ener-
gy.

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF002

Control System Infrastructure

ISBN 978-3-95450-148-9

693 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

ACK. If an error occurred, the sender reduces the in-
terval of ACKs.

An alternative algorithm to the sliding window is also
permitted. A “bit-map” algorithm allows the receiver to
build its copy of the large message with the segments it
receives and keeps track of the holes. When a packet ar-
rives with the ACK request, the receiver can go back and
specify the earliest hole. With each filler sent, the sender
always asks for a reply. The receiver replies with each
hole’s offset until they are all filled [4].

STAND-ALONE IMPLEMENTATION
The protocol was implemented between two

MVME5500s utilizing UDP socket communications.
Both nodes ran vxWorks 6.4 operating systems. Repeated
messages were sent for 10 Secs with selected large
message sizes between 1,000 to 32,000,000 bytes. If a
single datagram was needed for the large message, the
protocol was still used to guarrentee messages arrived
with acknowledgment. The maximum datagram sizes
tested were 0x2100, 0x8100, oand 0xF100 bytes.

To establish a base-line, local messages were sent as
well as messages over the a 1 Gbit Ethernet. This would
provide a comparison of packet latency and associated
problems with the network. The result of this local test is
in Figure 2 for the various datagram sizes acknowledging
every datagram. The maximum long message size
displayed on the graph is 1,000,000 bytes since there was
negligable change for larger message sizes.

Figure 2: Stand-alone Local Msg Acking Every UDP.

Figure 3 displays the throughput sending messages of

varying datagram sizes for a 10 second period. Messages
was sent in only one direction over an operatonal 1 Gbit
Ethernet acknowleging all datagrams.

Figure 3: Stand-alone Network Msg Acking Every UDP.

Figure 4 displays the throughput from one node to
another using a datagram size of 0xF100 while varing the
acking rates.

Figure 4: Stand-alone Network Msg, UDP=0xF100.

ACNET IMPLEMENTATION
ACNet is a peer-to-peer protocol which routes messag-

es to connected tasks. ACNet has three distinct messages:
unsolicited one-way messages, requests, and replies. Cur-
rently, ACNet uses UDP datagrams to implement this
protocol and was limited to a single UDP datagram size
for it’s messaging. Historically, ACNet implemented
packeting within the protocol but this was limited to a
maximum of 16 packets. The goal was to provide at lease
10 mega-bytes of data in a single message.

The concept was to use a connected task called
“LNGMSG” to implement the collection of UDP frames
into a single message. If the task was not available on the
destination node, then the node did not support the proto-
col. This would enable an adiabatic implementation
across the complex.

0

20

40

60

M
B

yt
e

s/
Se

c

Long Message Size in Bytes

Stand-alone MVME5500 Local Large Msg
Ack Every UDP

UDP=0xF100 UDP=0x8100 UDP=0x2100

0

20

40

60

1
0

0
0

2
8

0
0

8
1

9
2

2
8

0
0

0

3
2

0
0

0

6
1

4
4

0

1
0

0
0

0
0

2
0

0
0

0
0

4
0

0
0

0
0

8
0

0
0

0
0

1
0

0
0

0
0

0

M
B

yt
e

s/
Se

c

Long Message Size in Bytes

Stand-alone MVME5500 1Gb Network
Large Msg Ack All UDP

UDP=0xF100 UDP=0x8100

0

10

20

30

40

50

60

1
0

0
0

2
8

0
0

8
1

9
2

2
8

0
0

0

3
2

0
0

0

6
1

4
4

0

1
0

0
0

0
0

2
0

0
0

0
0

4
0

0
0

0
0

8
0

0
0

0
0

1
0

0
0

0
0

0

M
B

yt
e

s/
Se

c

Long Message Size in Bytes

Stand-alone MVME5500 1Gb Network
Large Msg Ack UDP=0xF100

ack all packets

ack every 4th packet

WEPGF002 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

694C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Infrastructure

Unsolicited messages were sent to the connected task
“LNGMSG” followed by the large message protocol and
the original ACNet header. The data portion of the mes-
sage was specified in the large message protocol. The
message received by “LNGMSG” would concatenate the
data for the original message. After the protocol acknowl-
edged receiving the entire message, the message would be
delivered to the original task.

As before, an equivalent test was accomplished be-
tween two MVME5500 processors. The primary differ-
ence was the messages were sent as requests followed by
a single reply echoing the original message. Comparing it
with the original request validated the reply message.

Figure 5 is an ACNet local message sent as a request
and single reply to itself. Since these messages result in
memory moves acknowledging all datagrams was effi-
cient.

Figure 5: ACNet Local Msg Acking Every UDP.

Figure 6 displays the request/replies over the Ethernet

between two nodes with various the datagram sizes ac-
knowledging all datagrams.

Figure 6: ACNet Network Msg Acking Every UDP.

Figure 7 displays the various acknowledgment intervals

for a UDP size of 0xF100 bytes.

Figure 7: Stand-alone Network Msg, UDP=0xF100.

Figure 8 displays the various acknowledgment intervals

for UDP size of 0x7100 bytes which appears to be opti-
mal for the platforms tested.

Figure 8: Stand-alone Network Msg, UDP=0xF100.

0

10

20

30

40

50

60

M
B

yt
e

s/
Se

c

Long Message Size in Bytes

ACNet MVME5500 Local Large Msg Ack
Every UDP

UDP=0xF100 UDP=0x8100

UDP=0x7100 UDP=0x2100

0

10

20

30

40

50

60

1
0

0
0

2
8

0
0

8
1

9
2

2
8

0
0

0

3
2

0
0

0

6
1

4
4

0

1
0

0
0

0
0

2
0

0
0

0
0

4
0

0
0

0
0

8
0

0
0

0
0

1
0

0
0

0
0

0

M
B

yt
e

s/
Se

c

Long Message Size in Bytes

ACNet MVME5500 1Gb Network Large
Msg Ack All UDP

UDP=0xF100 UDP=0x8100
UDP=0x7100 UDP=0x2100

0

10

20

30

40

50

60

1
0

0
0

2
8

0
0

8
1

9
2

2
8

0
0

0

3
2

0
0

0

6
1

4
4

0

1
0

0
0

0
0

2
0

0
0

0
0

4
0

0
0

0
0

8
0

0
0

0
0

1
0

0
0

0
0

0

M
B

yt
e

s/
Se

c

Long Message Size in Bytes

ACNet MVME5500 1Gb Network Large
Msg Ack UDP=0xF100

ack all packets ack every 4th packet
ack every 8th packet ack every 16th packet
ack first & last packet

0

10

20

30

40

50

60

1
0

0
0

2
8

0
0

8
1

9
2

2
8

0
0

0

3
2

0
0

0

6
1

4
4

0

1
0

0
0

0
0

2
0

0
0

0
0

4
0

0
0

0
0

8
0

0
0

0
0

1
0

0
0

0
0

0

M
B

yt
e

s/
Se

c

Long Message Size in Bytes

ACNEt MVME5500 1Gb Network Large
Msg Ack UDP=0x7100

ack all packets ack every 4th packet

ack every 8th packet ack every 16th packet

ack first & last packet

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF002

Control System Infrastructure

ISBN 978-3-95450-148-9

695 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

PERFORMANCE ANALYSIS
The protocol without ACNet managed to provide min-

imal processing to combine the frames into a large mes-
sage. Thus, the sender did not over-drive the receiver.
Mismatched nodes or networks will eventually cause
buffers to be consumed and packets dropped within the
socket software implementation. In vxWorks, the error is
observed in the full socket counter returned from a call to
udpstatShow.

The ACNet protocol produced the above error more
readily since the processing of the ACNet received mes-
sage requires more processing than the sending of frames.
The acknowledgment process provides flow control since
the next portion will not be sent until the resume type
code is received. Only when the acknowledgment rate
decreased did the receiver run out of buffers. For these
tests, the transmitter was tuned with small delays for non-
acknowledged frames. While the protocol retransmits
dropped packets and the large message will arrive, the
throughput suffered drastically.

Delay tuning is not an appropriate solution. Providing
flow control by acknowlegment is not optimal for
throughput. The transmitter of the protocol needs to be
adaptive and adjust the acknowledgement rate as needed.

The performance graphs have consistently shown rea-
sonable throughput. The difference between the stand-
alone protocol and ACNet is as expected. The ACNet
overhead of concatenating the datagrams is slightly great-
er to process the ACNet protocols. The resulting imposed

transmitter delays in ACNet became the most significant
factor in performance differences between these two solu-
tions.

CONCLUSION
The ACNet throughput appears to be adequate for our

immediate needs. The protocol as specified is sufficient
for guaranteed delivery of large frames via UDP data-
grams. Further tests with all nodes in the control system
will give a better understanding of system performance.

The implementation on vxWorks required about one
person-month of effort. The implementation was trans-
parent to the user. The infrastructure only needed to be
rebuilt with changes to the include files. The implementa-
tion on Linux is in progress to provide full functionality
for the control system.

REFERENCES
[1] J. Patrick, “ACNET Control System Overview,” Fermilab

Beams-doc-1762-v1.
[2] K. Cahill, L. Carmichael, D. Finstrom, B. Hendricks,

S. Lackey, R. Neswold, J. Patrick, A. Petrov, C. Schumann,
J. Smedinghoff, “Fermilab Control System,” Fermilab
Beams-doc-3260-v3, http://beamdocs.fnal.gov/AD-
public/DocDB/ShowDocument?docid=326

[3] C. Briegel, G. Johnson and L. Winterowd 1990 The Fer-
milab ACNET upgrade, Nucl. Instrum. Meth. A 293 p.235-
238.

[4] C. Briegel, C. King, R. Neswold, K. Nicklaus, and
M. Sliczniak, ”Large ACNET Mesages, ” 2015.

WEPGF002 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

696C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Infrastructure

