
A GRAPHICAL TOOL FOR VIEWING AND INTERACTING WITH A
CONTROL SYSTEM

J. Forsberg, V. Hardion, D. Spruce
MAX IV Laboratory, Sweden

Abstract
We present a graphical interface for displaying status infor-

mation and enabling user interaction with the Tango based
control system for the MAX IV synchrotron. It focuses on
bringing an intuitive view of the whole system, so that oper-
ators can quickly access the controls for any hardware based
on its physical location.
The view is structured into different layers that can be

selectively shown, and various live updated information can
be displayed in the form of e.g. color or text. Panning and
zooming is supported, as well as invoking commands. The
interface is defined by an SVG (Scalable Vector Graphics)
drawing which can be edited without programming exper-
tise.

Since our system is based on modern web technologies, it
can be run as a web service accessible by standard browsers,
but it can also be integrated in GUI applications.

INTRODUCTION
The MAX IV laboratory is a synchrotron facility under

construction in Lund, Sweden. It has a TANGO [1] based
control system consisting of thousands of different pieces of
software that provide users with access to equipment. The
control system tends to be structured in a way that makes
sense to the software developers that build it, but not neces-
sarily to accellerator physicists and synchrotron operators.
This project, called “SVG synoptic”, is an attempt at making
a control system interface that is intuitive to the users.

The basic idea is to display live control system information
in the form of a picture that somehow represents the physical
layout of the machine, in a schematic way. Items in the
picture may contain live information about corresponding
control system variables, as e.g. color or text. The user is
able to iteract with the drawing in order to bring up specific
controls in a window, or to perform specific actions.

It may not be realistic to fit every detail of a complex sys-
tem into a single image. By allowing the synoptic to contain
several different detail levels, we can provide a seamless
interface where the user can choose what to see simply by
zooming and panning using the mouse.

A control system is usually logically split into several sep-
arate sub-systems such as vacuum, cooling, and so on, and
for many use cases only some of these may be of interest to
the user. SVG synoptic provides a way to structure the infor-
mation into layers that can be toggled on or off depending
on what subsystems are relevant at the time.

The size of the control system has to be taken into account
from a performance point of view. Communicating with
thousands of items is time consuming, and since most of the

information is not visible at any given time it is not helpful.
Therefore, SVG synoptic has the ability to only keep updated
about the parts currently visible to the user.

CHOICE OF TECHNOLOGY
The development of this project was initially motivated by

requirements from the users that were not easily achievable
using available tools. The choice was between extending an
existing system or creating a new one.

SVG
The standard tool for displaying synoptics in the TANGO

community is based on a specialized Java based drawing
tool called JDraw (part of the ATK [2] suite of tools). It
has some of the features of SVG-synoptic, but the current
viewers can only provide a static view. The JDraw format,
while simple, is also fairly limited. Since it is not a widely
used standard, there is not much tooling to work with the
file format.
SVG (Scalable Vector Graphics) [3] has the following

characteristics:

• Being a vector format (like JDraw) it produces resolu-
tion independent images suitable for free zooming.

• It is a mature, widely used and open standard, adopted
by web browsers (currently all major browsers except
IE 8 or older) and many graphics software packages.

• The file format is XML and therefore straightforward
to generate and manipulate programmatically.

• SVG can easily be accessed from javascript since it
becomes part of the DOM (Document Object Model)
once loaded. It can also be styled through CSS (Cas-
cading Style Sheets).

• The FOSS (Free and Open Source Software) drawing
application Inkscape [4] uses SVG as a native format.

Considering these features, we chose to go with SVG
instead of extending JDraw.

JavaScript
Part of the reasons SVG was chosen as an image format

was that it enables the use of a web browser as viewer, even
if embedded in an application. This cut down development
time, but it did mean that the user interaction had to be
implemented in JavaScript [5], the “native” programming
language supported by web browsers.
JavaScript has a large community around it, resulting in

a lot of high quality libraries. In particular, for interacting

Proceedings of ICALEPCS2015, Melbourne, Australia WEM309

User Interfaces and Tools

ISBN 978-3-95450-148-9

681 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



with SVG, D3.js [6] is very powerful. Although mostly
used for generating data visualisations, it can also be used
to manipulate an existing SVG. It is used for implementing
the interactive features of the synoptic.
An added benefit of having most of the application run-

ning inside a web browser is that it is straightforward to
implement it as a web service.

Python
The Python [7] programming language was an obvious

choice for the “back-end” part of the application, since it is
already the main language used for control system work at
MAX IV. Through the PyTango [8] bindings it can access
the control system at the low level, and the Taurus library
provides Qt4 [9] widgets and other functionality on top.
Python also has good representation in web frameworks,

which means that it’s also a reasonable choice considering
future developments.

ARCHITECTURE
The result of this project is a library, “svgsynoptic”, that

can be used to easily build visualisations as described above.
The implementation is as a Qt widget communicating with
the underlying control system and embedding a WebKit
component to render the view.

The QWebView widget in Qt makes it possible to embed
a full WebKit browser environment in a Qt widget, and the
PyQt bindings allow intercommunication between Python
and JavaScript.
In the following section, the general architecture of the

library is laid out. A few concepts will be used in this de-
scription:

model Items in the drawing must be connected to control
system entities. For this we usemodels. A model is sim-
ply a string, representing some control system aspect
in a standard way. For TANGO, a model may currently
be the name of a device (e.g. "sys/tg_test/1"), or a
device attribute (e.g. "sys/tg_test/1/ampli"). It’s
likely to be more generalised in the future. A drawing
item may have several models.

section A section is an item in the SVG that is not necessarly
directly represented in the control system, such as a
logical part of a machine. The idea is to allow the user
to navigate the synoptic by e.g. clicking a section in
order to move the view to that part.

layer The drawing may be structured into different layers,
each representing some global grouping of control sys-
tem items, e.g. “Vacuum” or “Magnet”. The user is
able to toggle each of these layers on or off at any time,
in order to restrict the visible information to what’s
relevant at the moment.

zoom level If needed, the drawing may be further structured
into an arbitrary number of zoom levels which succes-
sively present more detailed views of the system. The

synoptic will automatically switch between these lev-
els as the user changes the scale, displaying only the
current one.

Control
system

Back-end

Events/
polling

User interaction,
subscriptions

Updates

Front-end

Browser

Figure 1: Architecture overview.

In order to separate concerns, the system is composed of
two major pieces (Fig. 1):

• a “back-end” that communicates directly with the con-
trol system

• a “front-end” which presents a user interface to the
user.

We will be discussing TANGO specific details as an ex-
ample. The current implementation runs both of these parts
in the same process.

Back-end
The back-end handles all communication with the control

system. The synoptic itself is only concernedwith presenting
information about the underlying system, relying on opening
panels or external applications for direct user interaction
such as writing attributes or running commands. Therefore,
the information flow is essentially one-way, from control
system to back-end.
The back-end receives a list of models currently visible

in the synoptic from the front-end (see below). This list
is intended to be used to keep the front-end updated about
changes in the control system. The TANGO back-end dy-
namically sets up change event subscriptions to these models,
pushing updates to the front-end. It also unsubscribes to
attributes no longer in view.
The back-end received notification of user interactions

with the front-end, e.g. mouse clicks and hover. It can take
appropriate actions, such as visually selecting a clicked item,
opening an application when right-clicking certain models,
or updating the tooltip with relevant information about the
item hovered over, using the front-end’s API if needed. The
TANGO implementation reacts to right mouse button clicks
on models corresponding to devices, by bringing up an ap-
propriate window for direct interaction.
For the web-based implementation, a small part of the

back-end will run in the browser, to handle communication
across HTTP, using SSE (server-sent events) to push updates.

WEM309 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

682C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools



Front-end
The front-end (Fig. 2) is written in JavaScript and runs

entirely in a web browser, usually embedded as a Qt widget.
It is concerned with loading the SVG and presenting it to the
user in an interactive way, reporting control system related
actions to the back-end. The front-end is not directly aware
of the control system and can only associate model names
with items. It relies on the backend knowing what to do with
the models. It has a simple API which can be used from
the back-end, e.g. to inform the user about changes in the
control system state of a particular model.
The front-end needs to be configured by the developer.

At least an SVG image must be supplied, using the correct
structure.
The UI can be extended with various optional “plugins”

that add functionality. There are currently plugins for adding
information “popups”, a “thumbnail” view, and buttons to
toggle the visibility of each layer.

Embedding
Because of its implementation as a Qt widget, it is easy to

use the synoptic as part of another application. For example,
it has been used as part of a specialised vacuum application
(Fig. 3).

CURRENT STATUS
Applications based on the library is in use at MAX IV

since around one year, for the linear accellerator, the 3 GeV
storage ring and several beamlines. It has gone through
several revisions in order to handle the demands of a growing
control system.

Currently the storage ring synoptic contains roughly 2000
magnets, 1000 sensors, 200 beam position monitors, 85 ion
pumps and 80 vacuum valves. The SVG for this synoptic is
too large and complex to be drawn manually, so it is created
by a script taking equipment lists as input.
The current focus of development is making the library

a stable and flexible tool. The project source code is avail-
able at https://github.com/maxiv-kitscontrols/
lib-maxiv-svgsynoptic

CONCLUSION
We have provided a library that allows creating interactive

visualisations of a control system by drawing an SVG file and
inserting references to control system entities. The system
has been successfully used during the commissioning of the
MAX IV synchrotron facility and several beamlines.

ACKNOWLEDGMENT
The authors wish to acknowledge the entire team at MAX

IV, including controls and software, IT, accellerator group
and operators for invaluable feedback.

REFERENCES
[1] The TANGO Control system website: http://www.

tango-controls.org

[2] F. Poncet, J.L. Pons, 10th ICALEPCS Int. Conf. on Accelera-
tor, & Large Expt. Physics Control Systems. Geneva, 10 - 14
Oct 2005, FR2.1-6O (2005).

[3] W3C, Scalable Vector Graphics (SVG) 1.1 (Second Edition),
http://www.w3.org/TR/SVG/

[4] Inkscape website: https://inkscape.org/en/

[5] Ecma International, ECMAScript 2015 Language Spec-
ification, http://www.ecma-international.org/
publications/standards/Ecma-262.htm

[6] D3.js website: http://d3js.org/

[7] Python Software Foundation. Python Language Reference,
version 2.7, Available at http://www.python.org

[8] PyTango website: http://www.esrf.eu/computing/
cs/tango/tango_doc/kernel_doc/pytango/latest/
index.html

[9] Qt website: http://www.qt.io

Proceedings of ICALEPCS2015, Melbourne, Australia WEM309

User Interfaces and Tools

ISBN 978-3-95450-148-9

683 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



a

b

d

e

c

Figure 2: Synoptic for the linear accellerator of MAX IV. Initially an overview of the entire machine is shown (a). The user
can zoom in on a particular region (b) to reveal individual equipment such as magnets. To access a particular device, a
specific GUI (c) can be opened. A “thumbnail” (d) shows the current view in relation to the whole. A row of buttons (e)
allow the user to control the visibility of individual subsystems.

Figure 3: An example of embedding the SVG synoptic widget in a dedicated vacuum monitoring application. The widget
responds to user actions such as selecting a device in the tree to the left, by displaying the chosen device, and vice versa.

WEM309 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

684C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools


