
LabVIEW INTERFACE FOR MADOCA II
WITH KEY-VALUE STORES IN MESSAGES

T. Matsumoto#, Y. Furukawa, Y. Hamada, T. Matsushita, JASRI/SPring-8, Hyogo, 679-5198, Japan

Abstract
As the next generation of the Message and Database-

oriented Control Architecture (MADOCA), MADOCA II
is a message-driven distributed control framework that is
more accommodating, e.g., it allows control on Windows
operating system as well as messages consisting of data of
variable [1]. A prototype of MADOCA II was developed
in the Laboratory Virtual Instrument Engineering
Workbench (LabVIEW) interface in 2013 and
implemented on a control system in SPring-8 [2].
However, it was recognized that the interface should be
easy-to-use in order to be able to implement MADOCA II
in a wide variety of LabVIEW applications, especially in
synchrotron radiation experiments. In this paper, we
propose a redesigned LabVIEW interface to respond to
this challenge. In this interface, messaging is managed
through a unified method with virtual instruments (VIs)
using key-value stores. As a result, applications for the
client program and the equipment management server can
be easily constructed. The VIs are based on a dynamic
link library (DLL) developed in C++. The interface is
easily upgraded by replacing the DLL, which was also
applied to the Python interface.

INTRODUCTION
The Message and Database-oriented Control

Architecture (MADOCA)-II is the next generation of
MADOCA. It was successfully implemented in
accelerator controls in the SPring-8 and the SPring-8
Angstrom Compact Free Electron Laser (SACLA) data
acquisition (DAQ) system in 2013, as reported at the last
International Conference on Accelerator and Large
Experimental Physics Control Systems (ICALEPCS) [1].
Like its predecessor [3], MADOCA II is based on a
message-oriented control scheme. A message is composed
of a text in subject/verb/object/complement (S/V/O/C)
syntax. In this context, “S” denotes the program that is
automatically defined by the framework and “V” denotes
the action of a command, for which “put” or “get” is
primarily used. “O” is an object name, which identifies
the target of the message, and “C” is an action parameter.
Figure 1 shows the structure of MADOCA II messaging.
A graphical user interface (GUI) sends a message with
“put/camera/init” as V/O/C (S is abbreviated as
described), and an equipment manager (EM) of device
control responds to the message in the S/V/O/C format. If
the initialization of the camera is successful, C is set to
“ok” in the response message. Thus, this messaging
scheme is easy to understand.

Moreover, MADOCA II is more flexible than
MADOCA. In MADOCA II, data strings of varying
length, such image data, can be attached to a message,
and the Windows environment can be used for device
control. These features were utilized in control
applications in SPring-8.

Figure 1: The structure of MADOCA II messaging.
Messages are exchanged between a GUI and an
equipment manager (EM) thorough a Message Server
(MS) in each host.

A motivation underlying the development of

MADOCA II was the ability to use the Laboratory Virtual
Instrument Engineering Workbench (LabVIEW) interface
by using the above flexibilities because LabVIEW is used
for some parts in the accelerator control and many
applications in synchrotron radiation experiments. If these
LabVIEW applications are updated to contain an interface
for MADOCA II, we can unify its control procedures in
order to save on management costs.

In 2013, we developed a prototype of the LabVIEW
interface for MADOCA II, and applied it to a beam
position monitor (BPM) with NI PXI-5922 digitizers [2].
In the application, waveform data was attached to a
message. A total of 5,000 samples of the waveform could
be exchanged between a client application and an EM of
the BPM within one second, and the BPM application
functioned stably.
 We intend to apply the MADOCA II LabVIEW
interface to other LabVIEW applications. However, we
realize that the interface should be revised for ease of use
and better maintainability.

#matumot@spring8.or.jp

Proceedings of ICALEPCS2015, Melbourne, Australia WEM305

Software Technology Evolution

ISBN 978-3-95450-148-9

669 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

The prototype of the MADOCA II LabVIEW interface
was implemented by porting the algorithm of MADOCA
II with LabVIEW, excluding LabVIEW-zmq binding [4]
and Message Pack for LabVIEW [5]. We occasionally
needed to control the version of ZeroMQ and
MessagePack used in MADOCA II. However, this was
difficult because we did not maintain LabVIEW-zmq
binding and Message Pack for LabVIEW. Furthermore,
updating the library required elaborate work because we
needed to care both for the library for C++ and LabVIEW.
We redesigned the LabVIEW interface for MADOCA II
to solve these problems. In this paper, we describe this
redesigned MADOCA II LabVIEW interface and its
applications.

DESIGN OF MADOCA II LabVIEW
INTERFACE

We redesigned the MADOCA II LabVIEW interface
for better maintainability and ease of use. With regard to
maintainability, we developed the LabVIEW interface
using a Dynamic Link Library (DLL). The virtual
instruments (VIs) call the DLL to use functions in
MADOCA II. Since the DLL is constructed with the
MADOCA II library in C++, the algorithm for MADOCA
II can be shared between LabVIEW and other
applications in C++. The MADOCA II library can be
easily upgraded by replacing the DLL. We can also
manage the versions in ZeroMQ and the Message Pack at
the same time.

With regard to ease of use of the interface, we
decomposed the messaging steps in MADOCA II and
implemented each step through a corresponding VI. We
can easily construct an application by arranging these VIs.
To simplify the interface, we introduced VIs with key-
value store to manage information contained in the
messages. We prepared an internal buffer in the DLL.
When we build message information using a VI, the
information is stored in the internal buffer. The contents
can be obtained from other VIs by fetching the
information in the buffer.

In MADOCA II, we can treat messages containing data
of variable length, such as image data. This feature is
useful, but developing an easy-to-use interface for this is
challenging. Using the key-value stores, we can develop a
unified method to access this information, and it becomes
very easy to handle various kinds of data with this
messaging system.

The DLL used in the LabVIEW was applied using C++
and Python as well. MADOCA II applications can be
easily built from other languages in a similar manner. The
Python interface was prepared by using ctypes modules.
MADOCA II can be easily used through the script
language.

The details of the LabVIEW interface are shown below.

Implementation of VIs for Applications
We now describe the implementation of VIs for a client

application and an equipment management (EM)

application. Figure 2 shows a flowchart of a client
application. The steps involved in messaging are shown
with corresponding icons for the VIs. “MS2_OPEN” first
connects to an MS. At this time, an internal buffer is
created, followed by a handle to share information with
other VIs. Following this, the internal buffer is initialized
with “MSG_BUILD_INIT.” The message is then built
using “MSG_BUILD_INF.” For example, we can set the
key as “VOC” and the value to “put/camera/init.”

Figure 2: Flowchart of a client application in MADOCA
II.

Figure 3: Flowchart of an equipment manager server
application in MADOCA II.

WEM305 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

670C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

The extra data attached to the message can be built
using “MSG_BUILD_ARRAY.” For example, we set the
key as “image_data” and a value for the relevant array
data. Various data types can be specified, such as integer
and float. Following the construction of the message, we
send and receive messages using
“MS2_CLIENT_SENDRECV.” The received messages
are stored in the internal buffer in the DLL.
“MSG_FETCH_INF” and “MSG_FETCH_ARRAY” can
then be used to fetch required information. Finally,
“MS2_CLOSE” terminates the connection with the MS.

The case of a flowchart for an EM application is shown
in Figure 3. In case of an EM, “MS2_OPEN” is also used
to form a connection with an MS, but the object list
managed in the EM is set at the same time.
“MS2_SERVER_RECV” is then used to receive
messages from client applications. Following the receipt
of a message, information is stored in a buffer in the DLL
and fetched through “MSG_FETCH_INF.” The response
of an EM is determined by checking the V/O/C pattern of
the relevant message, and the reply is constructed using
“MSG_BUILD_INF” and “MSG_BUILD_ARRAY.”
Finally, “MS2_SERVER_SEND” sends the response to
client applications.

Thus, we can easily construct LabVIEW programs for
client applications and EM applications.

VI Components of MADOCA II LabVIEW
A total of 23 VIs were implemented for the LabVIEW

interface of MADOCA II. Some of these VIs are shown in
Figure 2 and Figure 3. Icons were prepared for each VI in
order to easily identify its use. We also prepared VIs to
treat various types of extra data, including hierarchical
structures.

An error handle was attached to each VI of the interface
in order to identify the error. Once we find the error, the
error content can be obtained through text from other VIs
to understand its cause during message routing in
MADOCA II.

Robustness against Control Troubles
We designed the MADOCA II LabVIEW interface to

be robust against control issues for an easy-to-use
interface. In MADOCA II, messages are exchanged by
using object information registered in the MSs. Object
information was registered to an MS when an EM started.
However, if the EM terminated unexpectedly, we often
found that object information was not cleared from the
relevant MS. In this case, we could not restart the EM
unless we manually cleared object information from the
MS, since a duplication of the object in an MS is
forbidden. To solve the problem, we first cleared object

information related to the application, and then restart the
EM. Thus, we avoided problems related to use in
MADOCA II.

Available Data Format in MADOCA II
In MADOCA II, extra data such as image and

waveform data can be attached to a message. The extra
data can be built and fetched with key-value stores in the
MADOCA II LabVIEW interface. However, it is
important to have unified data format to share
information with different applications. Therefore, we
defined data formats for several data types, such as image,
waveform, camera controls, etc. An example of the data
format for image data is shown in Table 1. In case of
image data, the data type was defined by the key
“image_data_type,” and image size was defined by
“image_width,” “image_height,” and “image_depth.”
The data type of the image was defined by
“image_num_type,” and the image array data was
defined by “image_data.” Data format was also applied
to the MADOCA II library with C++ and used in a
control application for image transfer in a two-
dimensional interferometer in SPring-8 [6].

Table 1: An Example of Data Format for Image Data

Key Data type Value
image_data_type string “MONO”,”RG

B”,”RGBA”
image_width int32_t
image_height int32_t
image_depth int32_t
image_num_type string “uint8_t”,”uint1

6_t”,”uint32_t”,
”uint64_t”,”int1
6_t”,”int32_t”,”i
nt64_t”,”float”,”

double”
image_data defined by

image_num_
type

image_pixel_order string “lefttop,”
“leftbottom”

(“lefttop” if not
defined)

Proceedings of ICALEPCS2015, Melbourne, Australia WEM305

Software Technology Evolution

ISBN 978-3-95450-148-9

671 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Figure 4: An example of a client program to monitor a camera image with MADOCA II LabVIEW interface. The
camera images were remotely obtained through MADOCA II messaging from a camera server.

CAMERA IMAGE VIEWER WITH
MADOCA II LabVIEW INTERFACE

Figure 4 shows an example of a client application for a
camera image viewer using the MADOCA II LabVIEW
interface. The application performs remote control of a
camera and monitors the intensity graph of the resulting
image. In the application, the camera is initialized with a
“put/camera/init” command, and image data is requested
with a “get/camera/aquire_image” command. The
obtained data is stored in an internal buffer in the DLL
and fetched by specifying the corresponding keys:
“image_height,” ”image_width,” ”image_num_type,” and
“image_data.” Then, the obtained data array is monitored
as an intensity graph with LabVIEW. Such an application
can be easily programmed with the MADOCA II
LabVIEW interface.

For synchrotron radiation experiments, we tested an
application using a high-sensitivity camera, the
Hamamatsu ORCA-Flash 4.0. We prepared a camera
server with an EM for ORCA-Flash and monitored the
camera image from another client PC with the same
application as shown in Figure 4. The PCs were
connected to a 1 GbE network switch under a local
network. A camera image of 4 MP could be monitored
with a few Hz rate.

In the MADOCA II LabVIEW interface, we used an
internal buffer in the DLL for ease of use with key-value
stores. The control application may be not suitable for
quick control because we the internal buffer is mediated
during messaging. However, we can apply the interface
for slow control applications, such as monitoring and
device controls in SPring-8.

SUMMARY
We redesigned MADOCA II LabVIEW interface for

ease of use and better maintainability. We applied key-

value stores to VIs to easily manage various data in
messaging with a unified method. The LabVIEW
interface is based on the DLL and can be easily upgraded
by replacing it. The DLL is also applicable to other
languages, such as C++ and Python. With the redesigned
interface, MADOCA II can be easily applied to
LabVIEW and enables rapid programming. We will apply
the redesigned LabVIEW interface to several control
applications in SPring-8 in future research. We are
preparing a LabVIEW application with an interface for a
monitoring system for the NewSUBARU accelerator. We
also plan to add functions to the LabVIEW interface for
greater flexibility in control applications.

ACKNOWLEDGEMENT
We are grateful to Chuo Electric Works Ltd. for

developing the LabVIEW interface for MADOCA II.

REFERENCES
[1] T. Matsumoto et al., “Next-generation MADOCA for

SPring-8 control framework”, Proceedings of
ICALEPCS 2013, San Francisco, USA, (2013) p. 944.

[2] Y. Furukawa et al., “MADOCA II Interface for
LabVIEW”, Proceedings of ICALEPCS 2013, San
Francisco, California, USA, (2013) p. 410.

[3] R. Tanaka et al., “The first operation of control system
at the SPring-8 storage ring”, Proceedings of
ICALEPCS’97, Beijing, China (1997) p.1.

[4] http://zermq.org/
[5] http://msgpack.org/
[6] A. Kiyomichi et al., “Development of MicroTCA-

based image processing system at SPring-8”,
Proceedings of ICALEPCS 2013, San Francisco,
California, USA, (2013) p. 78.

WEM305 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

672C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

