
BIG DATA ANALYSIS & ANALYTICS WITH MATLAB®

D. Willingham#, MathWorks, Sydney, Australia

Abstract
In today's world, there is an abundance of data being

generated from many different sources in various
industries across engineering, science & business. For
example, DESY’s 1.7 mile-long PETRA III accelerator is
capable of generating 20 gigabyte’s of data per second
[1]. Using Data Analytics to turn large volumes of
complex data into actionable information can help
improve design and decision making processes. Big data
sets may often be too large for the available memory, take
too long to import and process, or just stream too quickly
to store. Standard algorithms are usually not designed to
process big data sets in reasonable amounts of time or
memory usage. MATLAB® is the high-level language
and interactive environment used by millions of engineers
and scientists worldwide. It lets you explore and visualize
ideas and collaborate across disciplines including signal
and image processing, communications, control systems,
and computational finance. Using a generic case study we
demonstrate efficient ways to manipulate, compute and
visualise on large, multidimensional data sets on light
weight machines. The techniques presented here can also
be used to develop predictive models, scale up for high
performance computing on clusters, or in the cloud and
deployable within databases, Hadoop and other Big Data
environments.

INTRODUCTION
Big data describes a massive volume of data that is so

large or complex that it's difficult to manage and process
using traditional database and software techniques [2].
Big Data is commonly described by the 3 V’s

 Volume – which references the amount of data.
 Velocity – is the speed at which data is generated or

needs to be analyzed.
 Variety – which describes the range of data types and

sources from which data is obtained.

There are a number of challenges that arise when

analyzing big data sets, especially for domain experts who
are not necessarily experienced software programmers.
These include:
 How to get started and gain insight into the basic

structure and format of the data especially when the
volume exceeds memory limits?

 Rapid exploration of the data, and development of
algorithms which can easily be scaled for use with
big data

 Using big data algorithms within business systems

As an interesting example of the volume and velocity
of data that is being generated in the world. In 2000, the
world generated 2.5 Exabyte’s of data a day [3]

In this paper, we present a generic case study
identifying and predicting patterns of the domestic flights
in the US between 1987 and 2008, which is 12gB in size
[4]. We address the challenges mentioned previously by
demonstrating two capabilities of MATLAB®, namely,
datastore and mapreduce and the links with Big Data
storage platforms such as Hadoop.

This paper is organised as follows. We highlight 3

techniques that can be used to handle importing and
processing big data;

1. Scale the problem down
2. Parallelize the Problem
3. Scale up if needed along with the MATLAB

functions that support these.

TECHNIQUES FOR HANDLING BIG
DATA

Scale the Problem Down
For simpler problems where data can be too big to be

analyzed at once, but where distinct sub-problems can be
calculated and the results easily aggregated together, we
can simply loop through the various files or records, load
the subset of data we’re interested in, analyze it, store the
result and repeat. MATLAB’s datastore enables this
to be achieved in the easy efficient way.

What is datastore?

A datastore[4] is an object for reading a single file or a
collection of files or data. The datastore acts as a
repository for data that has the same structure and
formatting. For example, each file in a datastore must
contain data of the same type (such as numeric or text)
appearing in the same order, and separated by the same
delimiter. A datastore is useful when:
 Each file in the collection might be too large to fit in

memory. A datastore allows the ability to read and
analyze data from each file in smaller portions that
do fit in memory

 Files in the collection have arbitrary names. A
datastore acts as a repository for files in one or more
folders. The files are not required to have sequential
names.

 Not all the data needs to be loaded into memory. For
example, you may only wish to analyse 10 columns
out of 50 from a data file, so only import the 10 that
are needed.

david.willingham@mathworks.com.au

WED3O05 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

656C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management, Analytics & Visualisation

Create and Read from a Datastore
Use the datastore function to create a datastore. For

example, create a datastore from the sample file,
airline.csv [5]. This file includes departure and arrival
information about individual airline flights.

ds = datastore('airline.csv')

After creating the datastore, the data can be previewed
without having to load it all into memory. Variables can
be specified as columns of interest using the
SelectedVariableNames property to preview or read only
those variables.

ds.SelectedVariableNames=
('DepTime','DepDelay'};
preview(ds)

ans =
 DepTime DepDelay
 _______ ________
 642 12
 1021 1
 2055 20
 1332 12
 629 -1
 1446 63
 928 -2
 859 -1

Values can be specified in the data which represent
missing values. In airline.csv, missing values are
represented by NA.

ds.TreatAsMissing = 'NA';

If all of the data in the datastore for the variables of
interest fit in memory, it can be read using the readall
function.

T = readall(ds);

Otherwise, read the data in smaller subsets that do fit in
memory, using the read function. By default, the read
function reads 20000 rows at a time. However, this value
can be changed by assigning a new value to the ReadSize
property.

ds.ReadSize = 15000;

Reset the datastore to the initial state before re-reading,
using the reset function. By calling the read function
within a while loop, we can perform intermediate
calculations on each subset of data, and then aggregate
the intermediate results at the end. This code calculates
the maximum value of the DepDelay variable.

reset(ds)

X = [];
while hasdata(ds)
 T = read(ds);
 X(end+1) = max(T.DepDelay);
end
maxDelay = max(X)
maxDelay =
 1438

If the data in each individual file fits in memory, you

can specify that each call to read should read one
complete file rather than a specific number of rows.

reset(ds)
ds.ReadSize = 'file';
X = [];
while hasdata(ds)
 T = read(ds);
 X(end+1) = max(T.DepDelay);
end
maxDelay = max(X);

Parallelize the Problem
As the number and type of data acquisition devices

grows annually, the sheer size and rate of data being
collected is rapidly expanding. These big data sets can
contain gigabytes or terabytes of data, and can grow on
the order of megabytes or gigabytes per day. Most
algorithms are not designed to process big data sets in a
reasonable amount of time or with a reasonable amount of
memory. MapReduce allows us to meet many of these
challenges to gain important insights from large data sets,
and importantly can be run using parallel processing on
multiple cores, processors or clusters which can reduce
computational time.

What is MapReduce?
MapReduce[6] is a programming technique for

analyzing data sets that do not fit in memory.

mapreduce uses a datastore to process data in small

chunks that individually fit into memory. Each chunk
goes through a Map phase, which formats the data to be
processed. Then the intermediate data chunks go through
a Reduce phase, which aggregates the intermediate results
to produce a final result. The Map and Reduce phases are
encoded by map and reduce functions, which are primary
inputs to mapreduce. There are endless combinations of
map and reduce functions to process data, so this
technique is both flexible and extremely powerful for
tackling large data processing tasks.

mapreduce lends itself to being extended to run in
several environments, on a single PC, on a cluster and or
integrated with Hadoop®.

Prepare Data
The first step to using mapreduce is to construct a

datastore for the data set. Along with the map and reduce

Proceedings of ICALEPCS2015, Melbourne, Australia WED3O05

Data Management, Analytics & Visualisation

ISBN 978-3-95450-148-9

657 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

functions, the datastore for a data set is a required input to
mapreduce, since it allows mapreduce to process the data
in chunks.

ds = datastore('airline.csv');

Write Map and Reduce Functions
The mapreduce function automatically calls the map

and reduce functions during execution, so these functions
must meet certain requirements to run properly.

1. The inputs to the map function are data, info, and
intermKVStore:

 data and info are the result of a call to the read
function on the input datastore, which mapreduce
executes automatically before each call to the map
function .

 intermKVStore is the name of the intermediate
KeyValueStore object to which the map function
needs to add key-value pairs. The add and addmulti
functions use this object name to add key-value
pairs. If none of the calls to the map function add
key-value pairs to intermKVStore, then mapreduce
does not call the reduce function and the resulting
datastore is empty.

A simple example of a map function is:

function MeanDistMapFun(data, info,
intermKVStore)

 distances =
data.Distance(~isnan(data.Distance));

 sumLenValue = [sum(distances)
length(distances)];

 add(intermKVStore, 'sumAndLength',
sumLenValue);

end

2. The inputs to the reduce function are intermKey,
intermValIter, and outKVStore:

 intermKey is for the active key added by the map
function. Each call to the reduce function by
mapreduce specifies a new unique key from the keys
in the intermediate KeyValueStore object.

 outKVStore is the name for the final KeyValueStore
object to which the reduce function needs to add key-
value pairs. mapreduce takes the output key-value
pairs from

 outKVStore and returns them in the output datastore,
which is a KeyValueDatastore object by default. If
none of the calls to the reduce function add key-

value pairs to outKVStore, then mapreduce returns
an empty datastore.

A simple example of a reduce function is:

function MeanDistReduceFun(intermKey,
intermValIter, outKVStore)

 sumLen = [0 0];

 while hasnext(intermValIter)

 sumLen = sumLen +
getnext(intermValIter);

 end

 add(outKVStore, 'Mean',
sumLen(1)/sumLen(2));

end

This reduce function loops through each of the distance
and count values in intermValIter, keeping a running total
of the distance and count after each pass. After this loop,
the reduce function calculates the overall mean flight
distance with a simple division, and then adds a single
key to outKVStore.

Run MapReduce
After you have a datastore, a map function, and a

reduce function, you can call mapreduce to perform the
calculation. To calculate the average flight distance in the
data set, call mapreduce using ds, MeanDistMapFun.m,
and MeanDistReduceFun.m.

outds = mapreduce(ds, @MeanDistMapFun,

@MeanDistReduceFun);

* MAPREDUCE PROGRESS *

Map 0% Reduce 0%

Map 16% Reduce 0%

Map 32% Reduce 0%

Map 48% Reduce 0%

Map 65% Reduce 0%

Map 81% Reduce 0%

Map 97% Reduce 0%

Map 100% Reduce 100%

WED3O05 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

658C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management, Analytics & Visualisation

View Results
Use the readall function to read the key-value pairs

from the output datastore.

readall(outds)

ans =

 Key Value

 ______ __________

 'Mean' [702.1630]

SCALE UP IF NEEDED

Scale Up if Needed
By default, if the Parallel Computing Toolbox is

installed with MATLAB, the MapReduce will run in
parallel on multiple cores. However in big data problems
it’s common for the scale of the problem to go beyond
what a single machine can handle. In such situations,
users should look to process the problem on a cluster (or
cloud) that link up to big data storage framework, e.g.
Hadoop. Note that this method does require a cluster, and
works best if the analytics are deployed on the same
cluster as where the data is stored.

Using the MapReduce and Datastore functionality built
into MATLAB, we can develop algorithms on our desktop
and directly execute them on Hadoop. To get started,
access a portion of the big data stored in HDFS with the
MATLAB datastore function, and use this data to develop
MapReduce based algorithms in MATLAB on our
desktop. We then use MATLAB Distributed Computing
Server to execute the algorithms on a cluster within the
Hadoop MapReduce framework against the full data set
stored in HDFS. Additionally we could integrate
MATLAB analytics with production Hadoop systems by
using the MATLAB Compiler to create applications or
libraries from MATLAB MapReduce based algorithms.

CONCLUSION
While Big data represents an opportunity to gain

greater insight and make more informed decisions, but it
also presents introduces a number of challenges with no
one size fits all solution. In this paper we presented three
capabilities of MATLAB to help address these. Using
datastore to import big data sets efficiently so that they
can fit into available memory, Using mapreduce,to
reduce the computational time to process analytics on the
data through parallelization. And finally how to combine
the first 2 approaches and scaling up and integrate the
analytics with computational clusters and Hadoop.

Looking to the future, Big Data computing is a field
that is constantly evolving due to the ever increasing
amounts of data being generated each day. MATLAB’s
datastore, mapreduce and deployment capabilities will

enable users to evolve their analytics to meet this ongoing
challenge.

REFERENCES
[1] “DESY and IBM Develop Big Data Architecture for

Science” 21 Aug, 2014. https://www-
03.ibm.com/press/us/en/pressrelease/44587.wss

[2] Beyer, Mark. "Gartner Says Solving 'Big Data'
Challenge Involves More Than Just Managing
Volumes of Data". Gartner. Archived from the
original on 10 July 2011.

[3] IBM press release, “IBM Expands PureSystems
Family to Help Clients Tame Big Data” https://www-
03.ibm.com/press/us/en/pressrelease/39039.wss, Oct
9, 2012.

[4] MathWorks Website “Getting Started with
Datasore”:
www.mathworks.com/help/matlab/import_export/wh
at-is-a-datastore.html

[5] United States Department of Transportation website:
http://www.transtats.bts.gov/OT_Delay/OT_DelayCa
use1.asp

[6] MathWorks Website “Getting Started with
MapReduce”:
www.mathworks.com/help/matlab/import_export/get
ting-started-with-mapreduce.html

Proceedings of ICALEPCS2015, Melbourne, Australia WED3O05

Data Management, Analytics & Visualisation

ISBN 978-3-95450-148-9

659 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

