
MADOCA II DATA LOGGING SYSTEM USING NoSQL DATABASE FOR
SPring-8

A. Yamashita∗, M. Kago, SPring-8, Hyogo, Japan

Abstract
The data logging system for SPring-8 was upgraded to the

new system usingNoSQL database, as part of theMADOCA-
II framework. The data logging system has been collecting
the log data that is required for accelerator control without
any issues since the upgrade. In the past, the MADOCA
system powered by a relational database management system
(RDBMS) had been operating since 1997. The MADOCA
system had grown with the development of accelerators.
However, the system with RDBMScould not handle new
requirements like variable length data storage, data mining
from large volume data and fast data acquisition. There-
fore, new software technologies were developed to address
these problems. In our proposed system, we adopted two
NoSQL databases, Apache Cassandra and Redis, for data
storage. Apache Cassandra is utilized for providing a per-
petual archive. It is a scalable and highly available column
oriented database suitable for time series data. Redis is
used for the real time data cache because of a very fast in-
memory key-value store. Data acquisition part of the new
system was also built based on ZeroMQ message packed by
MessagePack. The operation of the new system started in
January 2015 after an evaluation term over one year.

INTRODUCTION
The newMADOCA-II data acquisition and storage system

took over from the old system in January 2015. Since then,
it has been under operation at the SPring-8 accelerator and
beam lines control system without major troubles.
In the old MADOCA system [1], one large RDBMS [2]

managed not only the equipment and operation parameters
but also the log data [3]. It began the production run during
the commissioning of SPring-8 in 1997 and has since grown
as the accelerator has evolved. The number of signal data
increased from 871 at the commissioning in 1997 to 27,626
at the end of 2014 and the size of the database expanded
from 17.2GB (1998 one year) to 4 TB. With the progress of
the accelerator and for the next generation SPring-8-II [4],
we required more scalability, flexibility and maintainability
for the database system especially for the log database. In
The old MADOCA database system, almost every control
application depended on a single database server and the
server was required to be reliable and without down time.
On the other hand, increase in the number of signals re-
quired more performance from one server. Therefore, we
employed a fault tolerant database server and SAN (Storage
Area Network) storages for reliability. Although, they are
very reliable and have worked without trouble in years, they
are expensive and pose a difficulty during scale up.
∗ aki@spring8.or.jp

In the previous ICALEPCS, we reported the design
and implementation of MADOCA-II database, which used
NoSQL databases [5]. The system consisted of two
databases, Apache Cassandra [6] for perpetual data store
and Redis [7] for the real time data cache. The Apache Cas-
sandra runs on a redundant cluster of commodity servers.
It makes the cluster scale-out by simply adding additional
server nodes. Data are replicated and distributed to nodes.
In our case, up to two simultaneous node downs are tolerable.
On the other hand, Cassandra scarifies the consistency of
data. A Cassandra cluster distributes data to its nodes. It
takes time (about 1 sec in our case) until every node has con-
sistent data. We overcome the inconsistency of Cassandra
by writing data into a very fast in-memory data cache; Redis.
The data acquisition system writes data into Cassandra and
Redis simultaneously. Two Redis servers are run in parallel
for redundancy.
We installed the test system in SPring-8 accelerator and

beam line control environment. The system acquires and
stores the same set of data as MADOCA database system in
parallel. During the one year test, we operated the database
and data acquisition system with no major trouble. We ob-
tained many know-hows during the test run. From January
of 2015, we replaced old data acquisition and database sys-
tem with new MADOCA-II system with some modifications
based on know-hows that were obtained during the test run.

IMPLEMENTATION

Figure 1 shows the entire data acquisition and database
system. Our previous paper [8] explained the data acqui-
sition system. We did not make major modifications to it.
The data acquisition system operates with the old system in
parallel.

We developed a data sender running embedded computer
as well as libraries for data reading, web system and alarm
system running on client computers.

Data Senders
We developed two types data sender one is called

po2m2db which runs on an embedded computer system. It
extracts data from the shared memory inside, produces mes-
sages, and transmits them to a relay server asynchronously.
The other data sender is called cc2m2db for an embedded
system that has not enough resources to run po2m2db. The
old data acquisition system [9], which runs on a worksta-
tions, outputs data to stdout. cc2m2db captures the stdout
data, parse them, generates messages and send to the relay
server.

WED3O03 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

648C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management, Analytics & Visualisation



���������
���	��


��

��������

���������

���������
������

���
���

���

���������
���	��

�������

������

���������
���	��


��������

������������

���������
������

�������

�

�

�

�

�����
���	��

 �!


��

������������"����

 �!

�����

��	���

��	���

����"�

Figure 1: Entire data acquisition system. Blue ones are components of old MADOCA system. Yellow ones are newly
developed MADOCA-II system. Both are running in parallel. Two relay servers are running for load balancing and
redundancy. “w” means a writer thread.

Client Library

The client libraries that read data from Cassandra or Re-
dis were developed for graphical user interface applications
running on workstations. We named the functions identical
to the old libraries so that no modifications to the source
code of the applications were required. The new libraries
did not use the messaging system to access databases but
their own database client libraries . The new client library
selects one of the Redis servers randomly to read real-time
data. Because of the eventual consistency of Cassandra, one
may obtain inconsistent values if one accesses only one node
of the cluster. The library by default reads data in quorum
mode. It returns data if the data from at least two nodes are
identical.

Alarm Survey

We re-implemented alarm survey system for the new
MADOCA-II database. The old alarm system reads the
newest log data from RDBMS, compares them to the nom-
inal values stored in RDBMS, and writes alarm data to
RDBMS if an alarm event is detected [10]. We implemented
RDBMS in the system for normal value and alarm event
stores because those data are suitable for RDBMS. RDBMS
has better equipped to manage the relation between data and
flexibility of query over NoSQL. The survey application is
completely re-written using Python2.7 [11] and PyQt4 [12]
for GUI. Casandra, Redis, RDBMS and MessagePack [13]
libraries were open source resources. The old survey system
was running in parallel for log term test. The results of both

systems were compared and examined. and were found to
have no difference between them.

MODIFICATION FOR PRODUCTION RUN

Before the production run, we made some modifications
to the system after the one completion of the year test run.

Table Structure of Cassandra
Initially , the table structure was changed from one big

table to divided smaller tables. We implemented Cassan-
dra with one big table that stored all the data in the test run
and observed that a single big table is not equipped to man-
age large data. Casandra writes data into set of files named
SSTables. As the size of SSTables grow, those files are com-
bined into large SSTables. This process is called compaction.
Compaction requires temporary disk space with the same
size of SSTables. Therefore, the size of SSTables for one big
table cannot exceed more than half of the disk space as it an
inefficient disk utilization method. In addition, compaction
for big SSTables requires large amount of disk i/o and CPU
power.
We divided a big table into small tables for each month.

Owing to this modification the compaction requires less tem-
porary disk space, disk i/o and CPU resources. Although the
database management increases in complexity, the backup
job for files become much simpler with smaller files. The
reading libraries also need to be modified to readmany tables
in one function call.

Proceedings of ICALEPCS2015, Melbourne, Australia WED3O03

Data Management, Analytics & Visualisation

ISBN 978-3-95450-148-9

649 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Alive Flag
If an embedded computer stops, the data generator run-

ning on it will stop sending messages. The alarm system
detects the trouble. A message has a timestamp embedded in
its meta-data part. One may detect trouble by comparing the
timestamp with the system clock of the alarm system. How-
ever, each signal has its own data cycle, therefore differences
in the time time required to trigger the alarm should be set for
each signals. We added a cycle period to the meta-data part
of the message. Alarm system identifies the trouble when
the time stamp is delayed more than ten times the cycle.

Time to Live
Many signals keep same value in accelerator control sys-

tem. Especially signals for status, like on/off, remain un-
changed for long period of time. We will not store them if
the value of a signal is identical to the previous value to save
the total amount of data stored on disk. Cassandra provides
a "time to live" option for each column. The columns are
marked when the time limit is exceeded and the marked
columns are deleted at the next compaction job. We add
time to live values to meta data. The writer reads the time to
live meta data and add them to Cassandra’s insert command.
For data that are unchanged for long time, unchanged data
are stored in the Cassandra database every five minute. The
final structure of the message is shown in Fig. 2.

Cluster Expansion and Upgrade
The six node test cluster was changed to 12 nodes to store

large data sets. We constructed the other 12 node production
cluster, upgraded Cassandra version from 1.2 to 2.0 which
enables virtual nodes (vnodes) and implemented a new table
scheme. The vnode builds virtual nodes on physical nodes
and enables fast data repair by using the data replicas on
other vnodes. The specifications of servers are described in
Table 1.

Table 1: Server specifications

Server Dell PowerEdge R420
OS CentOS 6.6 (64bit)
CPU Intel Xeon E5-2420 v2, 6c, 2.2GHz
Memory 16GB
Hard disk (system) 600GB SAS 15Kr/m x1
Hard disk (data) 3TB SATA 7,200r/m x3
Cassandra version 2.0.10
JavaVM JRE1.7.0-67-b01

Data Migration
The archived log data on old RDBMS were duplicated

into the production Cassandra cluster. 4TB of data sets on
RDBMS stored from 1997 to the end of 2014 became 0.75TB
per Cassndra nodes. The total data size in the Cassandra
cluster was 9TB, which includes three replications of data.
The raw size of data in RDBMS is 4TB and becomes larger
in the real RAID5 file system.

Figure 2: Structure of a message. The first part is a key and
not Messagepacked. The second part is meta data. “tm” is
timestamp in nanoseconds. “tl” is time to live in miliseconds
and “cy” is data acquisition cycle in milliseconds. The last
part is data. Data in second and third part is packed by
Messagepack.

DIAGNOSTICS SYSTEM
We built and installed several diagnostic systems to ensure

the for healthy operation of the system.

Server Resource Monitoring
Server resources are monitored by Zabbix [14]. It not

only displays information acquired from SNMP (Simple
network management protocol) but also the data acquired
from JMX (Java Management Extensions) on Web browsers.
JMX monitor the heap status of Cassandra on the Servers.

Data Acquisition Monitors
We build two monitoring systems for relay and writer

processes. One is a simple system shown in Fig. 3 that
displays alive or dead status of processes and runs on the
display wall in the main control room to display status to
operators. The other is for system experts shown in Fig. 4.
It displays show message per seconds, elapsed time to write
into database, and other information. The application also
send/receives messages to/from relay servers for the test.
Both monitor applications were written in C++ with Qt4.

Figure 3: Screen capture of monitoring tool for operators.

Mail Notification System
Although the system has high reliability with no single

point of failure, we set up a mail notification system for
system troubles. System manager also received message
received check mail other than trouble notifications once a
day.

WED3O03 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

650C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management, Analytics & Visualisation



Figure 4: Screen capture of monitoring tool for expert.

CURRENT STATUS
We began operating the production system in January

2015. We have had no major trouble since then. We manage
27,000 signals on the system and handle 9,000 messages per
second. We also monitor system resources like CPU loada
and disk and memory usage and found no abnormal status.

The MADOCA-II database still remains a part of the old
system. The system on embedded computers and cc2m2db
are temporal ones that send data to old system in parallel.
We will implement a new MADOCA-II dedicated data gen-
eration application for embedded computers. The data regis-
tration files for embedded computers and database systems
are now separated into two files. The segregated data regis-
tration files were problematic for the old system, sometimes
they are inconsistent. Therefore, we aim to unify the files in
our proposed system for simplification and troubleshooting
the inconsistency.

SUMMARY AND FUTURE PLANS
We started SPring-8 operation using the new MADOCA-

II database. Before production, we modified the system

using the knowledge obtained from long term test operation.
We installed a monitoring system and re-wrote the alarm sys-
tem, client libraries and Web systems. We are now planning
to extend the dedicated MADOCA-II system to embedded
computers and signal registration system.

REFERENCES
[1] R.Tanaka, et al., “The first operation of control system at

the SPring-8 storage ring”, Proceedings of ICALEPCS 1997,
Beijing, China, (1997).

[2] A.Yamashita, et al., “The Database System for the SPring-
8 Storage Ring Control”, Proceedings of ICALEPCS 1997,
Beijing, China, (1997).

[3] A.Yamashita, et al., “Data archiving and retrieval for SPring-
8 acceleratorl complex”, Proceedings of ICALEPCS 1999,
Trieste, Italy, (1999).

[4] http://rsc.riken.jp/pdf/SPring-8-II.pdf

[5] M.Kago, et al., “Development of a Scalable and Flexible Data
Logging System Using NoSQL Databases”, Proceedings of
ICALEPCS 2013, SanFrancisco, USA, (2013).

[6] http://cassandra.apache.org/

[7] http://redis.io

[8] A.Yamashita, et al., “ANewMessage-Based Data Acquisition
System for Accelerator Control”, Proceedings of ICALEPCS
2013, San Francisco, USA, (2013).

[9] T.Masuda, et al., “Data Acquisition System with Database
at the Spring-8 Storage Ring”, Proceedings of ICALEPCS
1997, Beijing, China, (1997).

[10] A.Yamashita, et al., “The alarm system for the SPring-8 stor-
age ring”, Proceedings of ICALEPCS 1997, Beijing, China,
(1997).

[11] http://www.python.org

[12] http://riverbankcomputing.com/

[13] S. Furuhashi, Master Thesis, University of Tsukuba, Japan,
(2012).

[14] http://www.zabbix.com/

Proceedings of ICALEPCS2015, Melbourne, Australia WED3O03

Data Management, Analytics & Visualisation

ISBN 978-3-95450-148-9

651 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


