
WHY SEMANTICS MATTER: A DEMONSTRATION ON

KNOWLEDGE-BASED CONTROL SYSTEM DESIGN

W. Pessemier, G. Raskin, and H. Van Winckel, Institute of Astronomy, KU Leuven, Leuven, Belgium

P. Saey and G. Deconinck, ESAT, KU Leuven, Leuven, Belgium

Abstract

Knowledge representation and reasoning are hot topics

in academics and industry today, as they are enabling tech-

nologies for building more complex and intelligent future

systems. At the Mercator Telescope, we’ve built a software

framework based on these technologies to support the de-

sign of our control systems. At the heart of the framework

is a metamodel: a set of ontologies based on the formal se-

mantics of the Web Ontology Language (OWL), to provide

meaningful reusable building blocks. Those building blocks

are instantiated in the models of our control systems, via

a Domain Specific Language (DSL). The metamodels and

models jointly form a knowledge base, i.e. an integrated

model that can be viewed from different perspectives, or

processed by an inference engine for model verification pur-

poses. In this paper we present a tool called OntoManager,

which demonstrates the added value of semantic modeling to

the engineering process. By querying the integrated model,

our web-based tool is able to generate systems engineering

views, verification test reports, graphical software models,

PLCopen compliant software code, Python client-side code,

and much more, in a user-friendly way.

INTRODUCTION

Semantic models consist of pieces of information, and

the relationships between those pieces. The ability to link

any piece of information with another, thereby conveying

the meaning (semantics) of the information, is what sets

them apart from more “rigid” models such as those found

in relational databases or object-oriented software. Seman-

tic models are therefore well suited to represent all sorts of

knowledge about the real world. At the Belgian Mercator

Telescope (La Palma, Spain) we use the expressive power

of semantic models to capture engineering knowledge of

the telescope control system, which is being ported to a

Programmable Logic Controller (PLC). As will be demon-

strated in this paper, we have developed systems, electrical

and software engineering models of several subsystems of

the telescope, and successfully used these models for docu-

mentation, verification and implementation purposes.

FRAMEWORK ARCHITECTURE

As shown in Fig. 1, we have built a software framework

centered around a Knowledge Base (KB) that combines (inte-

grates) metamodels and models [1]. This KB can be queried

by a tool which we developed (OntoManager), and the results

of those queries can be fed into a template system to produce

documents such as web pages and source code files. The

metamodels provide the building blocks to construct models.

Knowledge Base
(KB)

Systems
models

Mechanics
models

OntoManager
queries

Documentation
(.html)

Specification
docs (.xls)

Server code
(PLCopen .xml)

Client code
(.py)

Verification
reports (.html)

Software
models

Templates

Electronics
models

Figure 1: Framework architecture.

They are true ontologies as they define a vocabulary in such a

way that the meaning of this vocabulary is well defined. Fig.

2 shows small excerpts of our systems metamodel (sys), me-

chanics metamodel (mech) and electronics metamodel (elec).

They define concepts (“classes”) such as sys:Feature and

mech:Assembly, and relationships (“properties”) such as

sys:hasFeature and elec:isConnectedTo. Unlike a

simple vocabulary, the meaning of these terms is further

constrained whenever possible. For instance, the definition

of a mech:Assembly says that “something” is a mechani-

cal assembly if and only if it has at least two mechanical

parts. Models based on this vocabulary will have to adhere

to these constraints in order to be valid. For the underlying

formal semantics (SubClassOf, EquivalentTo, Domain, ...)

we depend on the Semantic Web standards RDFS (Resource

Description Framework Schema) and OWL (Web Ontology

Language) [2].

Class: mech:Part
SubClassOf: sys:Feature

Class: mech:Assembly
EquivalentTo: sys:hasFeature min 2 mech:Part

ObjectProperty: sys:hasFeature
Domain: sys:System
Range: sys:Feature

Class: sys:Feature
Class: sys:System

EquivalentTo: sys:hasFeature some sys:Feature

Class: elec:Conductor
SubClassOf: mech:Part
EquivalentTo: elec:carries exactly 1 quantity:ElectricCharge
spin:constraint:

[a sp:Construct .
sp:text “CONSTRUCT { _:b0 a spin:ConstraintViolation ;

_:b0 rdfs:label ‘Signal mismatch!’ . }
WHERE { ?this elec:carries ?thisSignal .

?this elec:isConnectedTo ?other .
?other elec:carries ?otherSignal .
FILTER(?thisSignal != ?otherSignal) }”]

Class: elec:Contact
EquivalentTo: sys:Interface and elec:Conductor

ObjectProperty: elec:isConnectedTo
Characteristics: Symmetric
Domain: elec:Contact
Range: elec:Contact

Electronics metamodel (elec)

Systems metamodel (sys)

imports

importsMechanics metamodel (mech)

Figure 2: Small excerpts of some metamodels.

Proceedings of ICALEPCS2015, Melbourne, Australia WEB3O05

Software Technology Evolution

ISBN 978-3-95450-148-9

615 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Models that use the metamodel vocabulary consist of ex-

plicit statements such as “x rdf:type elec:Contact”

(x is an electric contact) and “x elec:isConnectedTo

y” (x is electrically connected to y). However, accord-

ing to the semantics of the metamodel (see Fig. 2), many

more implicit statements may be inferred. For example,

the formerly mentioned statement implicitely leads to “x

rdf:type elec:Conductor” (because elec:Contact

is a subclass of elec:Conductor) while the latter state-

ment implicitely leads to “y elec:isConnectedTo x”

(because the elec:isConnectedTo relationship is sym-

metric according to the metamodel). A so-called reasoner

or inference engine (SPIN API1 in our case) can automat-

ically produce these inferred statements and add them to

the KB. Similarly, supposing two contacts are connected

to each other, one of them carrying a 24V signal and the

other one a 4...20mA signal, then the constraint pattern of

the elec:Conductor will match, and a constraint violation

will be generated by the reasoner and added to the KB. The

metamodels, models and inferred knowledge can thus all

be represented as lists of statements, which can be stored

in text files. In our framework we parse those files using

the open source RDFLib2 Python package. While systems

can be modeled “directly” as a list of statements, real-world

systems will unavoidably result in many thousands of ex-

plicit statements (and a multitude of implicit ones). We

therefore need a more efficient way to populate the models,

as explained in the next section.

POPULATING THE KB

To develop models based on the metamodel vocabulary in

a convenient way, we need a modeling language. Graphical

languages such as UML and SysML are an option (as they

can be extended with stereotypes), but in our experience,

complex models of real-world systems require more syntax

than these languages typically offer. We have therefore devel-

oped a Domain Specific Language (DSL) called Ontoscript.

Ontoscript is an “internal” DSL as it is valid coffeescript3,

only it is used in a particular way. We have adopted this

idea from the Giant Magellan Telescope project [3]. An

example of an Ontoscript model is displayed in Fig. 3. It

shows how an instance of an I/O module of type “EL1088”

is added to a project, and its terminals are connected to the

pins of a connector. When this script is executed, then the

IO_MODULE_INSTANCE function is called, producing hun-

dreds of statements. For instance, for each channel and

each terminal of the “EL1088” I/O module type, a corre-

sponding channel and terminal will be added automatically

to the I/O module instance. These newly created termi-

nal instances can then be further described and connected

(via the elec:isConnectedTo relationship) to the pins of

some previously modeled connector. This idea is very simi-

lar to object-oriented software, because when a class is in-

1 http://topbraid.org/spin/api
2 http://github.com/RDFLib
3 http://coffeescript.org

stantiated, then also all variables (and sub-variables) of the

class definition must be added to the instance. In our frame-

work this functionality is programmed by Ontoscript func-

tions such as IO_MODULE_INSTANCE, CLASS_INSTANCE,

etc. When the Ontoscript models are executed, they pro-

duce text files containing thousands of statements. When

parsing these text files using RDFLib, we have a KB which

we can start to query.

Figure 3: I/O module instance modeled in Ontoscript.

QUERYING THE KB

Using the “Query” tab of our OntoManager tool, we can

submit arbitrary queries to the KB (which is essentially an

RDFLib instance). The de-facto query language of the Se-

mantic Web (called SPARQL4) uses pattern matching and

filters to select the requested information. Such a SPARQL

query executed by the OntoManager tool is shown in Fig. 4.

The query selects all I/O module types in the KB, their manu-

facturer and their description, and counts their instances. By

looking at the query, one can see that this kind of informa-

tion can be retrieved with only knowing the metamodel and

some simple SPARQL syntax. SPARQL also supports more

advanced queries (e.g. including numerical calculations or

comparison), which are often used for verification purposes.

Figure 4: Arbitrary query executed in OntoManager (red)

and its results (blue).

4 http://www.w3.org/TR/sparql11-overview

WEB3O05 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

616C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

VIEWING THE KB
While the Query tab of OntoManager can be used to ex-

tract some specific information from the KB, we can also

predefine some queries and a suitable template as a so-called

"view". Several of these views have been integrated in On-

toManager so far, as can be seen in Fig. 5. The main part

of the figure shows a web-based view of the I/O module

instance "slot3" of the "Cover" electrical configuration. The

latter is part of the dust cover subsystem of the Mercator

Telescope, which seals the telescope tube during daytime

via eight pivoting aluminum panels (similar to the petals of

a flower). Dozens of queries have been executed in the back-

ground to produce this “electronics” view, e.g. to retrieve

the system properties, the channel and terminal properties,

the electric connections to the connectors of the cabinet, and

so on. The results of these queries are fed into a web-based

template (written in mako5 syntax) hosted by a web server

(based on the Pyramid6 framework). We have developed

very similar views for other frequently used electrical com-

ponents such as connectors and motor drives. All views are

linked to each other via the semantic model: for instance,

we can see that terminal 1 of the shown I/O module instance

is connected to pin 13 of the connector instance T1. By

clicking the T1 hyperlink, the connector view will be shown,

offering the connector’s pin layout and other details. Thanks

to a predefined template for viewing I/O modules, the On-

toscript model slot3 of Fig. 3 can thus be displayed as

a nicely formatted and “clickable” web page without any

additional effort. The resulting web pages document the elec-

trical system and may be used as specification documents

(for drawing the electrical schemas) or for troubleshooting

purposes. Due to the many visible hyperlinks, it is very easy

to browse the documentation, thereby navigating trough the

electrical system from one component to another.

In a similar way, also information of other engineering

disciplines may be linked to the electrical information via

the underlying semantic model. For instance, in Fig. 5 the

shown I/O module instance satisfies a requirement, which

can be inspected by clicking the corresponding hyperlink

(arrow 1). The resulting web page shows the properties

of the absFeedbackStatus requirement, from which the

panelDesign systems engineering view can be opened (ar-

row 2). The I/O module is also linked to software mod-

els via its interface: see arrow 3. The SM_CoverPanel

PLC function block has been fully modeled using the On-

toscript DSL and can therefore be illustrated in the web

browser. It should be noted that a large fraction of the

SM_CoverPanel model is the result of a model transfor-

mation implemented in the Ontoscript DSL. For instance,

in this model we only specified some essential information

about the startOpening process. When running the DSL

script, the model is expanded automatically with additional

software features (methods, variables, struct definitions) and

even an implementation. As can be seen on the figure, ev-

ery variable of this implementation can be clicked. In other
5 http://www.makotemplates.org
6 http://www.pylonsproject.org

words: the model is aware of each individual variable and

each individual operation of this implementation. Running

the ontoscript models thus generated a model of the imple-

mentation, not just some text. One of the advantages is that

we can use the same model to generate source code instead of

web pages. Using the library view (arrow 4) we can convert

the model into source code that can be loaded in a com-

mercial PLC programming environment (arrow 5) or into

a Python project (arrow 6). The generated Python source

code contains an OPC UA (OPC Unified Architecture) in-

formation model based on our in-house developed Unified

Architecture Framework (UAF7). One can see that with just

three Python instructions, we are able to read any variable

exposed by the main PLC of the Mercator Telescope.

CONCLUSIONS

Several subsystems of the Mercator Telescope have been

developed using the presented tools, and are in operation.

The models (and the systems they represent) currently con-

sist of 55 I/O module instances, 159 PLC function block

definitions, and 626 PLC function block instances. Based

on these experiences, we attempt to answer the initial ques-

tion: why semantics matter?

1. Because any piece of information is just one query

“away”. Semantic models expose the relationships be-

tween all kinds of (electrical, software, systems, ...)

information and thereby facilitate organizing, integrat-

ing, browsing and finding (querying) information.

2. Because well defined semantics allow verification. Se-

mantic models allow “implicit” information to be in-

ferred from the explicit information captured by the

models, thereby allowing constraints verification.

3. Because the same semantics may be used for building

future “smart” systems. Semantic modeling languages

are a key enabling technology for future intelligent sys-

tems. One can imagine a newly developed astronomical

instrument being able to expose its capabilities and to

“learn” about the capabilities and services of its envi-

ronment (e.g. observatory or lab), in order to automate

integration or even collaboration with “fellow” instru-

ments.

REFERENCES

[1] W. Pessemier et al., “A practical approach to ontology-

enabled control systems for astronomical instrumentation”,

Proc. ICALEPCS 2013, San Francisco, October 2013, TU-

COCB03 (2013).

[2] D. Allemang and J. Hendler, Semantic Web for the Working

Ontologist: Effective Modeling in RDFS and OWL, 2nd Ed.,

(Waltham, MA: Morgan Kaufmann Publishers, 2011).

[3] J. M. Filgueira, “GMT software and controls overview”, Proc.

SPIE 8451, Amsterdam, July 2012, 845111 (2012).

7 http://github.com/uaf/uaf

Proceedings of ICALEPCS2015, Melbourne, Australia WEB3O05

Software Technology Evolution

ISBN 978-3-95450-148-9

617 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Figure 5: Example of some views, all linked to the I/O module instance “slot3”.

WEB3O05 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

618C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

