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Abstract
ZeroMQ is an emerging message-oriented architecture

that is being increasingly adopted in the software engineer-
ing of distributed control and data acquisition systems within
the accelerator community. The rich array of built-in core
messaging patterns may, however, be equally applied to
within the domain of high-level applications where a seam-
less integration of accelerator models and message logging
capabilities, respectively, serve to extend the effectiveness of
beam dynamics applications and allow for their monitoring.
Various advanced patterns that include intermediaries and
proxies further provide for reliable service-oriented brokers,
as may be required in real-world operations. A report on an
investigation into ZeroMQ’s suitability for integrating key
distributed components into high-level applications, and the
experience gained, are presented.

MOTIVATION
ZeroMQ [1] is an emerging message-oriented architecture

that has already made a profound impact within the wider ac-
celerator and experimental physics community. A favourable
evaluation from among several contemporaries [2] has since
seen it target existing CORBA (Common Object Request
Broker Architecture) [3] systems at several facilities [4–6].
It is also being adopted in message-based data acquisition
systems [7–10] and has provided the means by which beam
synchronous data is retrieved in high-frequency pulsed accel-
erators [9, 11]. Its apparent identification as today’s middle-
ware of choice has triggered an interest for its applicability
within the domain of high-level applications at SwissFEL,
Switzerland’s X-ray Free-Electron Laser Facility [12, 13];
where CORBA may once have been used at a previous fa-
cility for incorporating distributed components into beam
dynamics applications [14, 15], ZeroMQ presents itself as a
viable, state-of-the-art, alternative that deserves considera-
tion. Of particular interest is the integration of accelerator
models and message logging capabilities which respectively
serve to extend the effectiveness of beam dynamics applica-
tions and allow for their monitoring.

DISTRIBUTED COMPUTING WITH
ZeroMQ

ZeroMQ is a lightweight, socket-like, asynchronous mes-
saging library that provides for the transport of raw message
buffers in a flexible and scalable distributed computing envi-
ronment. The idiosyncratic name lends itself to the project’s
ambition to reach maximal performance by minimizing la-
tency, copying, and the necessity for brokers (i.e. their num-
bers approach the limit of Zero). A first investigation into

the ZeroMQ library already reveals a number of compelling
features:

• A rich array of messaging patterns, including the fa-
miliar request-reply, publish-subscribe and push-pull
(pipeline) patterns, each of which defines a distinct
network topology.

• The availability of both unicast (inproc, ipc, tcp) and
multicast (pgm, epgm) transport layers.

• The ability to use these patterns and transports as build-
ing blocks to establish connections between processes,
with or without intermediate brokers/proxies.

• Support for multipart messages, which allow multiple
frames to be concatenated into a single message to be
sent over the network.

That these features are all available in a single library is
positively favourable. (By comparison, CORBA requires
separate libraries for their event driven and other services.)
Furthermore, an active ZeroMQ community provides sup-
port for numerous platforms and an increasing multitude of
programming languages.

Despite these benefits, some important components, that
are outside ZeroMQ’s stated interest, still need to be catered
for to attain a fully fledged distributed infrastructure:

• A Name Service that translates logical addresses into
bind/connect endpoints.

• An Implementation Repository for the activation and
re-activation of servers.

• Support for object serialization.

With these shortcomings identified, what then are the
remedies? Although a name resolution service may be de-
veloped from among ZeroMQ’s architectural patterns, for
the present time, the use of configuration files for publi-
cising tcp/ip addresses is manageable. Most CORBA de-
velopers will have become accustomed to an Implemen-
tation Repository that interacted with the server’s Object
Adapter Mediator to handle the administrative aspects of
server (re-)activations [14]. A similar setup for ZeroMQ
would ensure that applications are never starved of the ser-
vices that they require. The lack of an interface to serialize
structured data may, at first, appear as a glaring omission
given that most use cases would require it. Fortunately, this
situation is redeemed through third-party solutions which
vary in form, complexity and performance, endowing devel-
opers with the prerogative to choose that which best suits
their needs.

Having now gained an insight into ZeroMQ’s capabilities,
its applicability to within the beam dynamics environment
is readily recognized. The request-reply messaging pattern,
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coupled with a suitable protocol buffer for the serialization
of complex data types, provide the ingredients for the imple-
mentation of a platform independent and language neutral,
client-server framework, enabling the exchange of data be-
tween online accelerator models and distributed applications.
The reactive publish-subscribe pattern, in preference, deliv-
ers an appropriate event-driven paradigm for constructing a
software framework for the propagation of diagnostic mes-
sages to a central logging and monitoring facility. Here,
ZeroMQ’s multipart message protocol allows a single mes-
sage type to be composed from several frames. The various
advanced patterns that include intermediaries and proxies
further provide for reliable service-oriented brokers, as may
be required in real-world operations.

ACCELERATOR MODELLING
The use of accelerator models is an essential feature in

both accelerator design and emulation, allowing developers
to manipulate the variables that determine the dynamics of
the particle beam in a simulated framework. For the most
part, however, these models were originally intended for use
in isolation. Typically, an ASCII input file, in the model-
specific format, containing lattice information and a set of
directives to compute the desired quantities is provided, and
the resulting output is directed to files for post-processing
analysis. For certain models, however, where the compila-
tion of the code into a shared object is a workable prospect,
then their accessibility from a high-level language may be
anticipated. Procedures that have been verified offline can
then be effectively engaged for the optimization of the ac-
celerator online. Methods may be executed to retrieve beam
dynamics (e.g. linear optics) parameters for a given setting
of the accelerator, for example, and model based corrections
subsequently applied [16, 17].

The feasibility to expose such accelerator models to beam
dynamics applications in a language-neutral manner in it-
self provides strong motivation for their incorporation into
the ZeroMQ messaging architecture. The resulting data in-
terfaces are invariably structured and any meaningful data
exchange requires serialization, however.

Serialization with Google Protocol Buffers
While a number of options exist for data serialization,

the Google Protocol Buffers [18] provide a binary encoding
format that has a number of recognized advantages. An in-
terface definition language allows structured data schemas to
be specified from numbered fields affixed with well-defined
keywords and data types. These ensure backward compati-
bility, validation and extensibility. The Protocol Buffers are
implemented in several languages easing interoperability be-
tween applications from different domains. In the course of
this work, Google introduced Protocol Buffers language ver-
sion 3, proto3. The new version has a simplified interface
definition language structure, making it more accessible to a
broader range of programming languages. Several new fea-
tures have also been added to support nomenclatures such as

the Any type, the associative map and oneof keyword. A fu-
ture release of proto3 is to provide a well-defined encoding
in JSON (JavaScript Notation Object) [19] as an alternative
to binary proto encoding for data consumption by e.g. web
browsers. The migration from proto2 to proto3 for our
limited set of proto files was a straightforward endeavour;
proto3 is not, however, backward compatible with proto2

although the latter syntax may still be incorporated into the
former if so declared.

PyLiTrack
The Python computation of LiTrack [20] provides fast,

two-dimensional, longitudinal single-bunch tracking. The
relatively uncomplicated interface provides a useful test case
for integrating an accelerator model into the ZeroMQ ar-
chitecture through the Google Protocol Buffers. The data
schema (proto) file, shown in Fig. 1, is, consequently, com-
paratively light. The protoc binary compiler automatically
generates stub class files that are used for data encoding and
parsing. Input arguments to the line command determine
what languages are provided for. In the present setup, PyLi-
Track runs as a server and clients connect using ZeroMQ’s
request-reply pattern. In this way, the Pythonic tracking code
is made available to non-Pythonic applications.

pylitrack.proto 
syntax = "proto3"; 
package plt; 
message pltInput  { 
 repeated string fileName=1; 
 message ArrayElement { 
  repeated float floatList=1; 
  repeated int32 int32List=2; 
           string strTag=3; 
 } 
} 
message pltOutput { 
 message ArrayElement { … } 
 message floatList { 
  repeated float ele=1; 
 } 
 repeated ArrayElement BL=1; 
 repeated floatList zpos=2; 
 repeated floatList dE_E=3; 
 repeated float Ebar=4;  
 … 
 repeated float fcut=13; 
}                      

pylitrack.pb.h pylitrack_pb2.py 

pylitrack.pb.java 

class pltInput { … } 
class pltOutput { … } 

pylitrack.pb.cc 

class pltInput { … } 
class pltOutput { … } 

$protoc pylitrack.proto  

--cpp_out  
--java_out 

--python_out  

public final class pylitrack  
{ … } 

Descriptors … 
GeneratedProtocolMessageType 
… 

Figure 1: The generation of stub classes, for various lan-
guages, from the PyLiTrack proto file.

MAD-X
The MAD-X (Methodical Accelerator Design) simulation

code [21] is regarded as a defacto standard for the com-
putation of beam-optics parameters for a given accelerator
lattice. In addition to the stand-alone executable, it is avail-
able as a C++ library with bindings for Python [22]. An
identical procedure for data serialization is applied here.
The corresponding proto file exposes the so-called Twiss
tables which parameterise the beam ellipse in phase space.
One distinct advantage of using the library as opposed to
running the stand-alone executable is that the lengthy and
computer intensive initialization step (where the long list of
sequences that define the model are interpreted) need only
be loaded into memory once. Numerous iterations, as re-
quired in fitting procedures for instance, can be undertaken
without having to continually re-initialize with the same,
given model definition. At the same time, in cases where
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successive single tasks necessitate a newly created address
space, a server-client configuration further gives confidence
that the accelerator model is always properly initialized on
(re-)activation. One variant applied sees a Python client
communicating with a Python MAD-X server, using Ze-
roMQ as the transport layer, but preferring Python’s own
Pickle module for the serialization. The activation of the
server is enacted through the use of Python scripts. While
this may suffice in the short term, the call for an Implementa-
tion Repository for handling the (re-)activation of ZeroMQ
servers becomes apparent!

Next Steps
The accelerator models so far considered represent the

most use-cases for online modelling at SwissFEL. While
a proof-of-principle has been demonstrated, a client-side
Application Programming Interface (API) for PyLiTrack
and MAD-X that hides the ZeroMQ and serialization im-
plementation details is to be finalized. In the absence of an
Implementation Repository, advanced patterns that provide
for reliable service-oriented brokers may also be preferred
to the present synchronous interactions.

MESSAGE LOGGING AND MONITORING
A messaging logging and monitoring facility, henceforth

referred to as the message logger, has been developed to
allow applications to report (publish) their diagnostic and
information data to interested subscribers. These include a
database (Oracle [23]) writer process for the storage of mes-
sages and a Graphical User Interface (GUI) for the display
of messages both in real-time and offline through database
retrieval operations. ZeroMQ’s multipart frames and the
extended publish-subscribe pattern, respectively form the
message envelope and communication layer.

Multipart Messages
ZeroMQ allows messages to be assembled from individ-

ual frames arising from different sources. The resulting
“multipart message” effectively adds a coarsely formed struc-
ture to the single message that is delivered to the network.
The need for marshalling/unmarshalling the data is alleviated
and ZeroMQ’s low-latency performance is not compromised.
The leading frame of the multipart message also serves as
a “topic” in ZeroMQ’s publish/subscribe architecture to set
filters that allow only events of interest to propagate to the
subscriber.

Extended Publish and Subscribe
The extended publish-subscribe model, shown in Fig. 2,

is the pattern adopted for broadcasting messages to inter-
ested clients. The proxy (or broker), which lies between
the publishers (PUB) and subscribers (SUB), provides the
solution to the so-called “dynamic discovery problem” by
binding XSUB and XPUB sockets (which expose subscrip-
tions as special messages) to the advertised IP addresses and
ports [24]. Publishers and subscribers need only connect to

the XSUB and XPUB sockets of the proxy, rather than to
one another. The proxy then takes charge of forwarding mes-
sages to subscribers. In this way, publishers, i.e. high-level
applications, may be easily hooked in to the system and have
their messages written to the database, viewed from within
a GUI or received by any other subscriber, e.g. console, that
can be readily added to the network.

ZeroMQ’s response to continuousmessages frommultiple
publishers is for the proxy to collect the messages evenly
from among the publishers (“fair-queued”). In the event
of message overload, where publishers outpace consumers,
messages are queued on the publisher’s side with the size of
the cached buffer determined by a configurable “high-water
mark” limit. The framework also profits from ZeroMQ’s
“zero-copy” capability in that buffers created by the publisher
can be sent directly by the message. The data does still need
to be written into the application buffers at the receiving end,
however.

XSUB 

XPUB 

SUB 
GUI 

SUB 

DB Writer 

SUB 

Console 

PUB 

APP 

PUB 

APP 

PUB 

APP 

Proxy 

DB 

Figure 2: The extended publish-subscribe pattern as applied
to the message logger.

Message Content
The specific details that comprise the message content

require careful consideration. More information within a
message may prove to be synonymous with a better reporting
ability, but should nevertheless be balanced against network
traffic and storage capacity interests. Naturally, for each
message (or event) a consistent set of data should be evident.
The established syslog protocol [25] acts as a basis for de-
ciding on the mandatory fields. These are supplemented by
a number of optional fields that are filled at the discretion
of the user. The message content was finalized in consul-
tation with machine operation leaders [26]. It is, however,
the provision of the user to supply meaningful and helpful
messages, that also propose solutions (for which an action
field is also provided) that ultimately hastens a return to
normal operation.

Each message field is housed within a multipart message
frame, simplifying the data unpacking process. The database
writer, for instance, maps frames directly onto a correspond-
ing database schema, as indicated in Fig. 3.
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MSG APP_NAME SOURCE SEVERITY 
Frame 1 Frame 2 Frame 4 Frame 5  … 

 … 

Multipart Message 

 

  
 

LINENO 
Frame 3 

 
 

 

 

  

MSG APP_NAME SEVERITY  … 

Database Schema 

SOURCE_LINENO 

Figure 3: The database writer maps multipart message
frames to database columns on a near one-to-one basis.

A Library for Publishers
To facilitate application developers with the reporting of

messages, a dedicated library, zmsglog, was developed that
hides the ZeroMQ implementation details and provides an
easy-to-use interface. The composed messages follow a
predefined format with required entries being filled automat-
ically by the provided API, with the obvious exception of
the user supplied message itself. An important feature of the
zmsglog is its ability to efficiently handle bursts of repeated
error messages. Such message bursts are cached on the pub-
lisher’s side and only a summary of their occurrence need
be sent over the network, thereby minimizing the network
traffic. The message logging facility has been successfully
put through high-volume data stress tests (without caching
of repeated methods). Listings 1 and 2 show a minimal
implementation from Python, using an inherited class, and
MATLAB, using the base class, respectively.

Listing 1: Python API for zmsglog
1 warnMsg = MsgLog.CyWarnMsg("OrbitDisplay")

2 warnMsg.setMsg("RMS outside operating limits")

3 warnMsg.send(__file__, __LINE__())

Listing 2: MATLAB API for zmsglog
1 msglog(’setAppName’,’3DScan’)

2 msglog(’setMsg’,’setVal outside hardware limit’)

3 msglog(’send’,’error’,dbstack())

A GUI for Subscribers
A GUI to the message logger has been developed in

Python/Qt (Fig. 4). It is able to display live messages in
real-time, with a dedicated window pane configured to mon-
itor priority, i.e. machine-critical, applications and fatal mes-
sages. A third window provides the user with an interface
for database retrieval operations, with ample sorting and fil-
tering possibilities. A database polling mechanism may also
be activated if preferred. The GUI may also be activated for
the purpose of a single, specific publisher by supplying the
application name as a command argument. The application
name acts as the topic in the multipart message by which
the GUI (subscriber) sets a filter in order to select only the
given application’s messages.

Figure 4: A GUI for viewing messages: in real-time (back,
middle), from priority applications (middle top), of highest
severity (middle bottom), and from the database (front).

Configuration File
A number of properties of the message logger are kept

separate from the application code and are managed through
a JSON configuration file, enhancing flexibility and sim-
plifying code maintenance. The possibilities range from
setting the ZeroMQ bind/connect endpoints, the high water
mark limit, announcing priority applications, to selecting
the display colours for the various message severity levels.

Next Steps
The present framework is well matched for the antici-

pated demand from high-level applications during the first,
two-year, SwissFEL beam commissioning phase [13]. Nev-
ertheless, since interest has surfaced to provide zmsglog to
low-level (e.g. feedback) systems, and with it the potential
for high-volume data flows, the scalability of the logging and
data mining components for problem tracing [27] requires
further consideration. To this end, a number of open-source
solutions, based on Apache Lucene [28], have been identi-
fied [29]. Among these is the ELK stack [30] – Elasticsearch,
Logstash, and Kirbana – which provide a complete frame-
work for data redirection, storage, analysis and visualization.
The Logstash API also provides a data pipeline for receiving
ZeroMQ messages that would allow it to plug in effortlessly
to the architecture presented in Fig. 2, as a subscriber to the
proxy.

SUMMARY
Various facets of the ZeroMQ asynchronous messaging

library have been explored and their usefulness to within the
domain of high-level applications has been recognized. In
particular, a framework based on the request-reply pattern,
coupled with the Google Protocol Buffers for the serializa-
tion of data, has been implemented for accessing acceler-
ator models from different programming languages. The
publish-subscribe pattern together with ZeroMQ’s multi-
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part messaging framework have formed the ingredients for
a message logging and monitoring facility that displays live
data in real-time. A notable feature throughout has been the
relative ease with which it has proved to employ the vari-
ous ZeroMQ messaging patterns, thereby releasing time and
effort to focus on the specific goals at hand.
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