
DISRUPTOR - USING HIGH PERFORMANCE, LOW LATENCY

TECHNOLOGY IN THE CERN CONTROL SYSTEM

M. Gabriel, R. Gorbonosov, CERN, Geneva, Switzerland

Abstract

Accelerator control systems process thousands of

concurrent events per second, which adds complexity to

their implementation. The Disruptor library provides an

innovative single-threaded approach, which combines high

performance event processing with a simplified software

design, implementation and maintenance. This open-

source library was originally developed by a financial

company to build a low latency trading exchange. In 2014

the high-level control system for CERN experimental areas

(CESAR) was renovated. CESAR calculates the states of

thousands of devices by processing more than 2500

asynchronous event streams. The Disruptor was used as an

event-processing engine. This allowed the code to be

greatly simplified by removing the concurrency concerns.

This paper discusses the benefits of the programming

model encouraged by the Disruptor (simplification of the

code base, performance, determinism), the design

challenges faced while integrating the Disruptor into

CESAR as well as the limitations it implies on the

architecture.

INTRODUCTION

CESAR is the high level software used to control CERN

experimental areas. The experimental areas are composed

of eleven beam lines used by experimental physicists for

fixed target research and detectors tests. Four beam lines

are located in the East Area, using a beam extracted from

the PS ring, and seven are in the North Area, using a beam

extracted from the SPS ring. The core of CESAR is

responsible for the data acquisition of all the devices

controlling these beam lines. While refactoring this data

acquisition part of Cesar, we decided to use the Disruptor

library in order to simplify the design of the code handling

the 2500 asynchronous event streams coming from these

devices.

In the last decade, the actors of the world of finance and

high frequency trading have been involved in an arms race

to build exchanges and trading robots that can operate at

the nanosecond scale. From time to time, some

technologies created by the massive investments in this

field are shared with the community [1].The Disruptor

library was created by LMAX [2] -a London-based

financial company- in order to develop a low-latency forex

[3] trading venue [4]. In the early design phase, they tried

different approaches: functional programming, Actors,

SEDA [5], and noticed that they could not achieve the

required latency because the cost of queuing was higher

than the time spent executing the business logic. They

finally settled on an innovative design and decided to open

source it.

THEORETICAL BACKGROUND

The base idea around the Disruptor is to make the most

of the available CPU resources, following a concept that its

creators call ‘mechanical sympathy’. This term coming

from the car racing world is used to describe software

working in harmony with the hardware design, similar to a

driver understanding how a car works in order to achieve

the best performance. Since the appearance of multicore

CPUs, we have heard expressions like “the free lunch is

over” [6] and there is a general belief that CPUs are not

getting any faster. Although their clock speed is not getting

higher, modern CPUs have brought significant

performance improvements. Regrettably, the progresses

made in hardware are often lost by software designs that

do not consider how modern processors work.

Feeding the Core

The most important aspect to consider in order to use a

processor efficiently is to feed it correctly. Processors are

very fast, but this speed is of little use if they spend most

of their time waiting for the data they need to process.

Looking at a simplified view of the memory architecture of

a modern CPU such as Intel’s Sandy Bridge (Fig. 1), we

see that the cores read data from several cache layers (L1,

L2, and L3).

Core 1

L1 Cache – 64 KB – 1 ns

L2 Cache – 256 KB – 3 ns

L3 Cache – 1 to 20 MB – 12 ns

Core 2

L1 Cache

L2 Cache

QPI – 40 ns

Socket 1

Quick Path Interconnect

to other sockets

RAM – 65 ns

Figure 1: Memory Hierarchy

WEB3O03 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

606C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

When a core needs to process data, it looks down the

chain in the L1, L2 and L3 caches. If the data is not found

in any cache, it is fetched from the main memory. As we

physically move away from the core, each memory layer

has an increased capacity, but is also several orders of

magnitude slower than the previous one. In order to use the

core at its maximum throughput, a program should work

on data that is available within the caches.

Developers do not have to do this manually, because the

processor is able to automatically prefetch the data in its

caches. However, the prefetcher has a limitation: it only

works if the memory is accessed with a predictable pattern:

this means that the program has to walk through memory

in a predictable stride (either forward or backward) [7].

This works very well while iterating on data structures that

use memory allocated contiguously, such as arrays, but

cannot be used with linked lists or trees because the

prefetcher is unable to recognize an access pattern on these

complex structures. This mechanism is not limited to one

thread; on modern Intel processors, up to 32 streams of data

can be prefetched concurrently.

Padding Cache Lines

Caches are composed of cache lines: these are memory

blocks of fixed size (64 bytes on modern x86). Cache lines

are the atomic units of memory used in caches: the

prefetcher always loads full cache lines, and when a

variable is written in a cache line, the full cache line is

considered as being modified. The phenomenon known as

‘false sharing’ happens when two unrelated variables share

the same cache line, and are written concurrently by two

threads running on two different cores (Fig. 2). These

threads constantly fight for the ownership of the cache line.

Since each write of a variable results in the invalidation of

the same cache line on the other core, the data needs to be

reloaded. If the two cores are on the same socket, it can be

reloaded from the L3 cache. If they are on different sockets,

this battle is fought through the QPI bus (Fig. 1), adding

even more latency.

Core 1 Core 2

X Y X Y

L
1

/L
2

 C
a
c
h
e
s

Core 1 Core 2

X

Y

P P P

P P P

X

Y

P P P

P P P

L
1

/L
2

 C
a
c
h
e
s

Figure 2: Top: variables X and Y sharing the same cache

line. Bottom: cache lines padded (represented as P) to

avoid false sharing.

Although false sharing is often overlooked, it can

significantly and silently degrade the performance of

concurrent code. The simplest example is a thread

incrementing a long variable in a loop. Running two of

these threads in parallel on a multi-core system should in

theory yield the same performance figures as running a

single thread, since each one should run on its own core

and increment its own independent variable. In reality,

when both variables share the same cache line, the threads

will need more than twice the time to complete, and this

ratio will increase as we add more threads [8]. In order to

solve this issue, the variables which are the most

susceptible to write contention can be padded in order to

fill the full cache line (Fig. 2). The padding forces the

variables to be placed in different cache lines.

DISRUPTOR ARCHITECTURE

At the heart of the Disruptor is the ring buffer (Fig. 3).

This data structure is used to pass messages between

producers and consumers. It has a bounded size, in order to

apply backpressure if the consumers are not able to keep

up with the producers.

It is backed by an array, which is initialised up front in

order to be fully allocated in contiguous blocks of memory.

The array structure and the contiguous memory make it

cache friendly because the CPU will be able to detect that

a consumer is walking through the memory in a predictable

pattern and will prefetch the memory into its caches.

5

6

7

8

9

10
1112

13

14

15

16

1

2

3 4

Producer 1Producer 2Producer 3Producer 4

Consumer 1Consumer 2Consumer 3

Figure 3: Ring Buffer

 The elements in the ring buffer are mutable. When the

producers reach the end of the buffer and wrap to the start,

they reuse existing entries and overwrite them. This means

that this data structure does not generate any work for the

garbage collector.

Proceedings of ICALEPCS2015, Melbourne, Australia WEB3O03

Software Technology Evolution

ISBN 978-3-95450-148-9

607 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

The progress of producers and consumers on the ring

buffer is tracked by sequence numbers. A sequence number

is a 64 bit long number, which is padded to fill a full cache

line. Since these variables are frequently read and updated

from concurrent threads, they could be a source of

contention. The padding removes the risk of false sharing.

Memory Visibility

The memory visibility of the data exchanged between

producers and consumers relies on the sequence numbers.

Updating a sequence number is similar to writing a Java

AtomicLong: it is translated into a compareAndSwap CPU

instruction. The CPU memory model guarantees that the

memory modified before a compareAndSwap will be

visible by other threads (this is true for the most common

CPU architectures, in the other case the compiler will add

an additional synchronization) [9]. This allows the

Disruptor framework to be lock-free, thus eliminating the

main contention point that comes with traditional

implementations of queues.

Batching

In most producer/consumer architectures, the producers

regularly outperform the consumers. The Disruptor

framework offers a smart way to catch up for consumers:

if several items are waiting on the queue, consumers can

process the full batch of available items at once instead of

processing one item at a time. Batching is usually more

efficient, especially when it involves I/O.

Consumer Dependencies

For a simple usage, the Disruptor can be used as a queue

between producers and consumers. In addition, the API

allows to declare a dependency graph between consumers

(Fig. 4).

Consumer 1:

Message parsing

Consumer 2:

Journaling

Consumer 3:

Replication

Consumer 4:

Business Logic

Figure 4: Example of consumer dependency

Real world applications often have several processing

layers connected by queues. With this feature, the

Disruptor can replace multiple layers of queues. The data

will be exchanged between the dependant consumers over

the ring buffer, eliminating the contention and delays

brought by the traditional queuing approach.

All these concurrent programming concepts are complex

and very error prone. They are a common source of errors

in real world applications and often difficult to

troubleshoot.

 The Disruptor architecture actually encourages code

simplification by writing the business logic in a single

thread. Since the framework takes care of the

synchronization, the business logic can be uncluttered of

the concurrency concerns. As a result, it is easier to reason

about it, as well as to test and maintain it.

DISRUPTOR USAGE IN CESAR

The 1300 devices controlling the beam lines generate

multiple streams of data. The CESAR server is in charge

of acquiring this data in order to compute an overall state

for each device. The first implementation was using

manual locking on the data structures in order to

synchronize the concurrent data streams. The main reason

to use the Disruptor is to simplify the overall device state

calculation.

In the new design, the messages coming from the

devices are stored on the ring buffer. Then a single

Disruptor thread updates simple buffers dedicated to keep

the last value for each data stream, and based on these last

values computes the overall device state that is published

to clients (Fig. 5).

Devices

Update buffers with last acquired values

Calculate device states with updated values

Publish device states to clients

Figure 5: State computation in CESAR

Benefits

This architecture has many benefits. The threads

delivering messages from devices never encounter a lock

and are released very quickly. If multiple messages are

WEB3O03 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

608C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

available on the ring buffer, they are processed as a batch.

This is a good fit for the experimental areas, where most

detectors publish their state simultaneously after being

triggered by a timing event. The batching mechanism

allows CESAR to process such bursts of messages more

efficiently.

The state computations are completely deterministic:

since a single thread processes messages in a known FIFO

order, we can easily understand why a given state was

calculated by looking at the message log. When a race

condition causes a bug in concurrent code, developers are

often left wondering why something that seemed

impossible actually happened. This usually occurs at the

worst possible times, when the system is heavily loaded

and when the applications logs offer little help to

understand in which order things really happened. The

single threaded design eliminates this class of problems

while keeping an excellent throughput.

Since we can rely on the fact that the business logic code

runs on a single thread, we can write lock-free code that is

more efficient and simpler. This also reduces the overall

cost of maintenance, because the business logic code has a

high chance of being modified during the software’s

lifetime.

The main concern when moving to a single thread is to

know if it will be fast enough. Considering that the

Disruptor was designed for high performance, we

speculated that it would easily cover our needs. We indeed

measured that our code, without any optimization effort,

was able to process around 1 million messages per second.

This is more than enough for our current needs and gives

us some room to grow, as other Disruptor users reach more

than 10 million messages per second with optimized code.

Limitations

During our refactoring we found that integrating the

Disruptor in an existing architecture is reasonably simple,

and less invasive than other approaches like actor

frameworks. There are nonetheless some aspects to

consider carefully before using this model.

The ring buffer is designed to apply backpressure. This

is usually a good design choice to fail gracefully under

load, but one should evaluate if the other parts of the

application are compatible with that approach. For instance

it might be a business choice to define if messages can be

lost when the buffer is full.

As the computations run on a single thread, developers

must make sure that this thread is never blocked. Any kind

of blocking I/O such as an interaction with a traditional

database should be avoided. The most common logging

frameworks also make use of locks, which could add

contention to this thread and reduce the performance

dramatically [10]. After executing the business logic, a

common use case is to publish the result of the

computation. If this publication is using potentially

blocking I/O, such as a remote message broker, the design

should handle a network or broker failure without blocking

the processing. In our case, we publish the calculated

device states over a JMS broker, and decided to add an

additional layer of buffering that keeps only the latest

device states if the publication cannot keep up. This is

acceptable because our GUI only needs the latest updates.

The Disruptor architecture is inherently asynchronous.

This is a natural design choice for control applications that

handle streams of data. At the same time, an extra effort is

necessary if it is required to support synchronous

operations as well. In our case, CESAR is required to

support a synchronous refresh for the overall device states,

based on the current hardware information. In order to

create a synchronous functionality based on asynchronous

services, we had to carefully analyse the different scenarios

that could happen in the asynchronous world (timeouts,

concurrent requests, etc.).

CONCLUSION AND OUTLOOK

The new CESAR architecture based on the Disruptor has

been used operationally for over a year and proved to be

very stable. The simplification brought by the separation of

concerns between the concurrency aspects and the business

logic allows for easy maintenance and extension of the

code base. We believe that a similar architecture can be

used for other control systems and can be particularly

beneficial for the ones that need to handle large amounts of

events with low latency.

A possible area of improvement for CESAR would be to

follow the design adopted by the creator of the library [11]:

journal and replicate all messages and base the server state

on these messages only. This would bring hot-swappable

servers and an easy way to reproduce operational scenarios

on a developer’s machine.

REFERENCES

[1] For example Goldman Sachs collections:

https://github.com/goldmansachs/gs-collections

[2] http://www.lmax.com/exchange

[3] https://en.wikipedia.org/wiki/Foreign_exchange_

 Market

[4] https://en.wikipedia.org/wiki/Multilateral_tradin

 g_facility

[5] https://en.wikipedia.org/wiki/Staged_event-

driven_architecture

[6] http://www.gotw.ca/publications/concurrency-

ddj.htm

[7] http://www.intel.com/content/www/us/en/archite

 cture-and-technology/64-ia-32-architectures-

optimization-manual.html

 Section 2.2.5.4 Data Prefetching

[8] http://mechanical-

sympathy.blogspot.ch/2011/07/false-sharing.html

[9] http://www.azulsystems.com/blog/cliff/2010-07-24-

unsafe-compareandswap

[10] http://www.grobmeier.de/log4j-2-performance-close-

to-insane-20072013.html

[11] http://martinfowler.com/articles/lmax.html

Proceedings of ICALEPCS2015, Melbourne, Australia WEB3O03

Software Technology Evolution

ISBN 978-3-95450-148-9

609 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

