
TOWARDS BUILDING REUSABILITY IN CONTROL SYSTEMS – A 
JOURNEY 

Puneet Patwari, Amar Banerjee, G. Muralikrishna, N. Swaminathan, Subhrojyoti Roy Chaudhuri 
Tata Research Development and Design Centre, Pune 411013, India

Abstract 
Development of similar systems leads to a strong 

motivation for reuse. Our involvement with three large 
experimental physics facilities led us to appreciate this 
better in the context of development of their respective 
monitoring and control (M&C) software. We realized that 
the approach to allowing reuse follows the onion skin 
model that is, building reusability in each layer in the 
solution to the problem. The same motivation led us to 
create a generic M&C architecture through our first 
collaborative effort which resulted into a fairly formal 
M&C domain model. The second collaboration showed 
us the need to have a common vocabulary that could be 
used across multiple systems to specify respective domain 
specific M&C solutions at higher levels of abstraction 
implemented using the generic underlying M&C engine. 
This resulted in our definition and creation of a domain 
specific language for M&C. The third collaboration leads 
us to imagine capturing domain knowledge using the 
common vocabulary which will substantially further 
reuse, this thought is already demonstrated through a 
preliminary prototype. We discuss our learnings through 
this journey in this paper.  

 
INTRODUCTION 

Monitoring and control systems are central to the 
working of projects such as SKA[1], ITER [2] and so on. 
These projects incorporate wide variety of heterogeneous 
systems and subsystems which require supervisory 
controllers for coordination. Our involvement with these 
projects gave us opportunity to learn and understand the 
kind of challenges involved in building monitoring and 
control solutions for such systems. One of our key 
observations is that these projects do reuse a lot of 
artefacts for the purpose of final implementation of their 
control systems. However, they still incur a huge amount 
of cost due to the effort they spend in the initial phases of 
the development life cycle. We noticed that this effort 
could also be substantially reduced since it showed large 
commonality in the type of activities taking place in each 
phase of their development life cycle.  

 
Motivated by this observation, we started to analyze the 

prospect of a generic M&C architecture. This led to the 
creation of a generic M&C design and a prototype to 
demonstrate it in the context of GMRT. The design was 
inspired by the data driven paradigm and resulted in 
identifying a set of engines that could configure 
themselves based on the supplied input data that 
described the problem context. This approach enabled 
capturing the abstract model behind this input data 

eventually serving as the generic domain or specification 
model to capture the details of any M&C problem. Our 
first implementation realized parts of this model based on 
the format of the underlying execution engine which 
resulted into fragmentation and duplication of the M&C 
problem spec. This showed us the need for an integrated 
environment which could ensure integrity and consistency 
in the M&C problem specification. We recognized the 
need for a domain specific language (DSL) [3] to enable 
specification of any M&C problem so that the solutions 
created using the DSL could be analyzed independently. 
Our DSL work showed us the need for an environment 
which could be made aware of the application domain 
through its support for extensibility, analyzability, re-
targetability and so on. We realized that such an 
environment would enable reusing a lot of domain 
knowledge which would enhance consistency in the entire 
M&C development process. 

 
In this paper we start with a discussion on the current 

practice and challenges that motivated our research. Next, 
we highlight the proposed solutions adapted throughout 
our journey. Subsequently, we provide a view of our 
current implementation followed by the section which 
summarizes and concludes the paper with a futuristic 
view. 

STANDARD PRACTICE AND 
CHALLENGES 

Most projects start working on the requirement and 
design of their M&C systems from the scratch. As a result 
each project or groups within a project end up creating 
their own version of the concepts around a general 
problem domain such as M&C. This leads to some re-
invention of concepts that are already created in another 
project. This point towards the lack of reusable artefacts 
except implementation packages across a problem domain 
that could enhance reusability in the entire development 
life cycle.  
 

System engineering language such as SysML 
[4][5]provides a convenient way of expressing the designs 
in most of the projects. However, since much of the M&C 
concepts are not built into the vocabulary of SysML, it is 
common for different groups within projects to define the 
M&C vocabulary independently using SysML. 
Unfortunately such definitions are mostly not shared 
across groups. This leads to non-uniformity in the 
definition and usage of the M&C concepts across groups 
within projects. Hence it requires manual effort to 

Proceedings of ICALEPCS2015, Melbourne, Australia WEA3O03

Software Technology Evolution

ISBN 978-3-95450-148-9

593 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



synthesize the design to create uniformity and consistency 
in the subsequent development phases. 
 

The good news is, when it comes to implementation 
there exist a lot of reusable open source SCADA 
[6]packages such as EPICS [7], TANGO [8] that are 
popular across the scientific community. 

 
Motivation 

So it can be concluded from the discussion above, our 
primary motivation comes from the lack of a) reuse of 
domain knowledge to design M&C systems b) domain 
aware design analysis environment to support the 
development process. 

PROPOSED SOLUTIONS 
The course of our work can be broken into three major 

solution proposition milestones which are discussed 
below. 
 
Inception of  a  G  eneric  Architecture  for  M&C–   
SACE  

Machine control systems are typically hierarchical, 
consisting of groups of devices at each level whose 
behaviour is orchestrated and coordinated by central 
controllers to achieve control objectives. Each device may 
contain actuators that perform actions on the 
environment, and sensors that determine the state of the 
environment. Thus the system can be imagined as a 
hierarchical network of sensors and actuators with 
feedback control at each level. 

 
This led us naturally to postulate a generic architecture 

consisting of functionally identical nodes where the 
interfaces between hierarchical levels consist of three 
streams: commands, data and events. Each node sends 
commands and receives data and events from child nodes. 
Data and events are processed to develop the worldview. 
Control logic on the command path is responsible to 
achieve the control goals through discrete and continuous 
feedback control. This generic architecture was called 
Sensor Actuator Control Element (SACE) [9][10] and can 
be represented as the following figure. 

 

 
Figure 1: SACE node architecture. 

The SACE node architecture incorporates the data-
driven paradigm and implements each functional block 
using off the shelf solution components. Moreover, SACE 
architectural principles are driven by the requirements for 
efficiency, scalability and availability which are critical to 
machine control of scientific instruments. 

 
The SACE prototype was initially created as a proof-of-

concept inspired by the ITER architecture. This prototype 
was assembled by selecting freeware (and evaluation 
versions) of off-the-shelf technologies, and integrating 
them using Java. Each component was driven by 
configuration files, mostly in XML but in some cases had 
tool-specific formats. The approach of assembling off-
the-shelf components made it possible to build the 
prototype quickly and effectively. The prototype 
successfully demonstrated the genericity of the 
architecture in the context of Giant Meterwave Radio 
Telescope (GMRT). 

 
Although the prototype itself could be viewed as one 

more implementation of a generic M&C package, it 
revealed the abstract structure behind the input data which 
could serve as the generic domain model for M&C 
systems.  

 
Creating Generic Domain Meta-model to  

Based on the results of the prototype discussed above, 
we decided to follow the Model-driven approach (MDA) 
[11][12]towards the definition of the M&C domain model 
and the creation of a domain aware environment to 
support its usage. This domain model would comprise of 
a vocabulary that can be mapped to the various concepts 
in the reference SACE architecture thereby establishing 
the correctness of the vocabulary.  

 
The goal of this meta-modeling activity was to 

incorporate much of the standards from the M&C domain 
into the meta-model. Some elements and relations in the 
meta-model are custom defined due to the lack of 
corresponding standards e.g. terminologies such as 
‘control node’ and ‘interface description’ and so on. But a 
good number of concepts implemented in the meta-model 
are borrowed from existing standards such as usage of 
state charts to capture behavior and so on. Since the 
concepts in the meta-model were derived based on the 
underlying modules of the SACE architecture, the meta-
model also ended up becoming modular for example, 
concepts related to a common concern such as data 
acquisition generated inter relationships as opposed to the 
concepts belonging to a different concern such as control 
behavior. This also creates flexibility in making any 
change to a specific part of meta-model without affecting 
the overall structure. Figure 2 provides a glimpse of a part 
of the meta-model. 
 

Describe M&C Problem and Solution Design 

WEA3O03 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

594C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution



 
Figure 2: Meta-model: Serves as the M&C domain model. 
 
Developing a DSL and Domain Intelligent  

 Environment
The meta-model served as the starting point towards 

conceptualizing an environment that facilitates domain 
driven engineering to build M&C solutions. Figure 3 
describes the architecture of the M&C specification 
environment or framework that captures an M&C 
problem and solution specification through the 
instantiation of the M&C domain model. 

 

 
Figure 3: M&C Specification architecture. 

 
As can be seen from the figure above, the top layer 

addresses the concern of a user interface to capture the 
M&C problem and solution specification. We 
implemented this layer using a DSL to capture the M&C 
solution details using the concepts defined by the 
specification model and named it M&CML [13]. The 

DSL helps to capture controller details such as its 
associated commands, responses, data streams, events, 
alarms, behavioral aspects like state machines, interaction 
with other subsystems, coordination logic and so on.  The 
environment aims to provide support for the entire 
solution creation process: that is requirements, 
architecture, design decisions, validations and 
verification, creation of tests and so on. We used Eclipse 
based technologies such as EMF [14] [15] [16]and XText 
[14] [17] [18]that provide support for rapid development 
of DSLs following principles of MDA which suited our 
purpose. With XText, the various elements of the DSL 
along with their relationships need to be specified as 
grammar for the target language. Based on this, XText not 
only automatically generates a compiler for the target 
DSL but also generates along with it a complete 
environment to support the usage of this DSL. The 
environment provides built in support for user assistance, 
syntax highlighting, and input validation and also 
supports translation of the user written DSL to M&C 
target platform specific input formats. Since the resultant 
DSL environment is also a plugin in Eclipse, it allows 
access to other Eclipse based tools that could be leveraged 
for visualization or editing parts of the DSL in the future. 
The diagramming environment can be made 
complementary to the textual interface so that user could 
switch between textual and visual world whenever it is 
necessary and feasible. 

 
The domain model is the heart of the specification 

framework. The domain model is implemented as a meta-
model using Ecore of EMF technology. All the 
information captured using the DSL get populated in a 
meta-model instance. Hence, such specification files 
created independently across distributed teams can now 
be compared since they follow the same underlying 
structure. It is an effective way to bridge the gap of non-
uniformity prevalent in the current approaches. 

 
The model translation engine translates the DSL into 

target M&C platform specific code using model to model 
(M2M) transformation. This component is implemented 
using a combination of XTend which comes bundled with 
the XText tool-set and Atlas transformation language 
(ATL) [19] which is available as an independent plugin 
for Eclipse. With XTend, code generation templates can 
be written for each target M&C execution platform. Such 
code generation templates allow XTend to navigate an 
Ecore based M&C model instance and invoke translation 
logic to perform the required translation in a non-intrusive 
and pluggable fashion. This makes it possible for the 
translators to add incrementally to the framework 
allowing it to provide support for a wide variety range of 
M&C target technologies over a long period of time. 

 
Last but not the least; the environment incorporates 

support to verify the solution created using this 
environment. Since much of the development of the 
controllers happen across teams in an isolated manner, the 

Proceedings of ICALEPCS2015, Melbourne, Australia WEA3O03

Software Technology Evolution

ISBN 978-3-95450-148-9

595 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



verification of the solution becomes difficult due to the 
absence of the dependent systems. The testing and 
simulation layer of our environment provides a way to 
capture information about the absent systems so that their 
behavior could be simulated to verify the controllers 
which have dependency on such systems. Much of the 
information related to the creation of test cases could also 
be derived from the information present in the solution 
spec created using the DSL. The environment also 
incorporates separate meta-models to capture specific 
input related to testing and simulation. Based on this the 
environment is able to generate executable test cases and 
simulator implementation to verify the specified 
controller. 
 

CURRENT PROTOTYPE ACTIVITY 
Figure 4 shows the usage of our DSL to capture part of 

the M&C solution spec for GMRT.  
 

 
Figure 4: Sample DSL specification file. 

 
GMRT is going through a system upgrade where they 

are moving from control system implemented using 
legacy software to a Tango based implementation. Since 
our environment already incorporates translators for 
Tango, it is envisaged that the upgradation process will 
get significantly augmented, since it will involve 
capturing the solution at a higher level and then

 

automatically generate the implementation code specific 
to Tango requirements. Though, we have limited data to 
prove this.  

 
Figure 5 shows a glimpse of the generated code 

adhering to TANGO standards and executable on the 
TANGO controls framework. 

 

 
Figure 5: Generated TANGO specific code. 

 
Since the environment also supports testing of the 

created solution, we believe this will add value to the 
testing and verification of the GMRT controllers 
significantly as well.  

 
Figure 6 shows code for an automatically generated 

simulator produced by our environment and figure 7 
shows a snapshot of a test run. 

 

 
 

Figure 6: Generated Simulator Code. 
 

 
Figure 7: Generated test report. 

WEA3O03 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

596C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution



LEARNINGS, CONCLUSION AND 
FUTURE WORK 

Our earlier work related to the generalization of the 
M&C architecture now has found multiple applications 
for GMRT and SKA and this gives us confidence that it is 
possible to build reusability in the early development life 
cycle of M&C systems. 
 

Although the MDE approach has been around for a 
while now, its application towards solving problems such 
as ours needs to be carefully thought through. There is 
always a possibility for the meta-model to become very 
complex very quickly. An important guidance towards the 
definition of the model is based on explicating concepts 
of the underlying architecture and seeing how much of it 
requires user interaction and specification. The 
technological support made available by framework such 
as XText makes is possible to build rich DSL’s 
environments with overall support for user assistance, 
verification and validation and retarget-ability.   
 

Taking this approach forward, we see the possibility of 
incorporating support for other aspects such as testing and 
verification of the developed design during the design 
phase itself. We foresee the possibility of explicating the 
application domain knowledge in an executable form so 
that they could be plugged into this environment 
incrementally providing more support towards guiding 
the development of M&C systems for application areas 
such as Radio Astronomy and so on. This could only be 
achieved through making this environment highly 
extensible and flexible which remains our endeavor.  

ACKNOWLEDGMENT 
We acknowledge all members of the GMRT team, 

members from the TM consortium and members of the 
ITER CODAC team for their collaboration that made it 
possible for us to pursue this work. 

REFERENCES 
[1] SKA project: https://www.skatelescope.org 
[2] International Thermonuclear Experimental Reactor: 

https://www.iter.org 
[3] Johan Den Haan, “DSL Development: 7 recommendations 

for Domain Specific Language design based on Domain-
Driven design”, 
http://www.theenterprisearchitect.eu/blog/2009/05/06/dsl-
development-7-recommendations-for-domain-specific-
language-design-based-on-domain-driven-design/ 

[4] Alan Moore, Sanford Friedenthal, Rick Steiner, “A Practical 
Guide to SysML” 

[5] OMG SysML : http://www.omgsysml.org/ 
[6] Office of the Manager National Communication System, 

“Supervisory Control and Data Acquisition (SCADA) 
Systems”. National Communications System, (October 
2004). 

[7] EPICS: http://www.aps.anl.gov/epics/ 
[8] TANGO: http://www.tango-controls.org/ 
[9] S. Roy Chaudhuri et al, “Integrated Monitoring and Control 

Specification Environment”, ICALEPCS (2013) 
[10] S.R.Chaudhuri, Swami N, Amrit Ahuja., “Model-driven 

development of control system software”, in The Low 
Frequency Radio Universe, conference at NCRA-TIFR, 
Pune, Page 384(2008). 

[11] Sebastien Gerard, Jean-Philippe Babau, Joel Champeau, 
“Model-driven engineering for distributed real-time 
systems”, Wiley-ISTE; 1 edition, (April 5, 2010). 

[12] OMG Model Driven Architecture: 
http://www.omg.org/mda/ (2008). 

[13] P. Patwari et al, “M&C ML: A modelling language for 
Monitoring and Control Systems”, IAEATM (2015) (Under 
Review) 

[14] Eclipse Modeling Framework: 
http://www.eclipse.org/modeling/emf/ 

[15] F. Budinsky, D. Steinberg, R. Raymond Ellersick, E. Ed 
Merks, S.A. Brodsky, T.J. Grose, “Eclipse Modeling 
Framework”, Addison Wesley (2003) 

[16] Sebastian Zarnekow, Sven Efftinge: “Model Driven 
Software Development with Eclipse”, Java User Group 
Hamburg, (November 2009). 

[17] Lorenzo Bettini, “Implementing Domain-Specific Language 
with XText and XTend”, (August 2013) 

[18] XText: https://eclipse.org/Xtext/ 
[19] Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I, “ATL: A 

model transformation tool.” Science of Computer 
Programming 72(1/2), 31–39 (2008) 

 

Proceedings of ICALEPCS2015, Melbourne, Australia WEA3O03

Software Technology Evolution

ISBN 978-3-95450-148-9

597 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


