
THE LMJ TARGET DIAGNOSTICS CONTROL SYSTEM
ARCHITECTURE

S. Perez CEA/DIF, Bruyères le Châtel, 91297, Arpajon, France
T. Caillaud, CEA/CESTA, Le Barp, 33114, France

Abstract
The French Laser Megajoule (LMJ) is, behind the US

NIF, the second largest inertial fusion facility in the
World. More than 30 diagnostics will be installed and
driven in a huge and complex integrated computer control
system. The aim of this paper is to describe an
architecture based on the TANGO open source software
for the very low level control system, Python language for
the development of drivers and the French commercial
PANORAMA© software as the main high level SCADA.

This choice leads to guaranty the evolution of the
middleware software architecture of this facility supposed
to be operated during dozen of years with the capability
of using many instruments including sustainability.

INTRODUCTION
Since it definitively abandoned nuclear testing, France

has relied on the Simulation Program to guarantee the
operational performance and safety of its nuclear
deterrent weapons throughout their lifetime.

Successful simulation requires both:
 Qualified computer codes that integrate laboratory-

validated physics models to simulate weapon
functioning;

 Teams of qualified physicists to use these codes.
In this respect, the Megajoule Laser (LMJ [1]) plays a

vital role, as it is used to validate the numerical codes and
certify the skills of French physicists.

On October 23, 2014, French Prime Minister Manuel
Valls declared the facility operational after starting up the
first experiment.

Target diagnostics are a key for numerous physical data

acquisition. CEA will develop dozen of these equipments
during next twenty years. Each target diagnostic will be
dedicated to one or several kind of measurements like X-
ray, visible, UV or particles like neutron…

During the life cycle of the LMJ Facility, CEA needs to
implement new kind of equipments compliant with a
stabilized control command system.

This paper describes the command control architecture
used for target diagnostics and the reasons why we insure
sustainability for such a huge modular installation.

We will describe the 2 layers of the Target Diagnostics
Control System (TDCS) and particularly the use of
TANGO for Layer 0, which guaranty modularity and life
time expectancy, and the French SCADA PANORAMA
E² [2] for Layer 1 dedicated for every LMJ command
control subsystem.

Maintenance and qualification tools will also be
described. The use of Open Source Software like
TANGO, Python and QT will allow the capability for
diverse contractors to insure all future developments.

USING A TARGET DIAGNOSTIC
In 2014-2015, three different target diagnostics have

been installed: two X-ray imaging systems (different
ranges of energy and waveform) and a complex
diagnostic used for Hohlraum temperature measurements
including an absolutely calibrated broadband X-ray
Spectrometer, a Gating Spectrometer and a time resolved
Imaging System of the emitting area.

This paper will focus on a « simple » X-ray imaging
system. This diagnostic can actually be compared to a
giant microscope. Made of 4 parts (alignment beams, a
telescopic motorized arm, filters and a framing camera),
the command control configures the equipment, then
focus it using alignment and the arm, in order to acquire
data from an optical camera (Fig. 1).

Figure 1: an X-Ray Target Diagnostic.

Each part of the diagnostic has to be driven by the

command control and, as these functions should be reused
in future target diagnostics, a modular command control
architecture must be designed.

THE LMJ COMMAND CONTROL
ARCHITECTURE

The LMJ command control architecture is driven by the
4 classical component layers, as shown in Figure 2 :
 Layers 2 and 3 are devoted to the common control

system (administration, main supervisory,
prediction and tuning system [4] [5], sequences
[6]…)

 Layer 1 is set for the main subsystems command
controls (target and laser diagnostics,
synchronization [7]…) and interfaces between
them.

 Layer 0 is the main layer for equipment
communications. It includes drivers,
communication protocols as well as maintenance
and qualification tools.

There is one Layer 1 for the all TDCS and as many as
necessary drivers included in Layer 0 for each defined

Proceedings of ICALEPCS2015, Melbourne, Australia TUD3I01

Integrating Complex or Diverse Systems

ISBN 978-3-95450-148-9

565 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

target diagnostic. PANORAMA E² is the Framework
used for Layers 1 to 3 (Fig. 2).

Figure 2: The LMJ Command Control Architecture.

Within that configuration it seems necessary to use a

modular Layer 0 architecture and established
PANORAMA Layer 1 software that accepts futur Target
Diagnostics as new plugin elements.

LAYER 0
A way to make Layer 0 modular is to develop hardware

to software abstraction layer between each equipment and
the command control. This kind of architecture has been
used by Microsoft with DirectX© or by National
Instrument MAX© system. Using an abstraction layer
allows equipment sustainability: Layer 1 software does
not have to be modified even if the low level equipment
changes. Only the equipment driver has to be updated but
the low level interface will remain the same (Fig. 3).

Figure 3: An Abstraction Layer Architecture.

TANGO as Layer 0
TANGO is a software architecture that have the

following characteristics:
 Uses an abstraction layer,
 Has been used from several years in huge

installations (mostly European synchrotrons),
 Supports different operating systems (Linux and

Windows),
 Allows modularity and, by the way, includes a

lot of instrument drivers,

 Can be programmed in different languages
(C++, Java, Python),

 Part of a large community,
 Available as an open source architecture [3].

Next figure shows how Tango architecture matches our

needs for modularity (Fig. 4).

Figure 4: The Tango Architecture.

TANGO framework comes with several tools that

simplify low level development phases.
In TANGO, a driver is usually called a Device Server

(DS). The DS communicate with each associated
equipment and is able to deliver information to the
TANGO software bus in different ways (push, pull,
event…).

A DS can also be a single process software whose
methods are shared between other DS (barycenter and
matrix computations for instance).

Each DS is made of:
 Methods (a typical list of functions that will be

available for Layer 1 or for other DS)
 Properties (items configurations like motor

characteristics, IP addresses…)
 Attributes (values changed by the equipment like

arm positions, motor currents, specific acquired
datas…)

One main TANGO development tool is Pogo, used to

generate both DS framework and DS documentation with
a choice of 3 different languages for writing the drivers.

The whole driver skeleton and interfaces are generated;
the developer « only » have to fill up the communication
protocol between hardware equipment and the
corresponding methods.

14 specific « States », are used for states machines in

Pogo. They are used to define the real condition of the
equipment (for instance « MOVING » for an arm,
« OPEN » and « CLOSED » for an obturator…). These
states are also used in the Layer 1 control software or by
other DS (Fig. 5).

TUD3I01 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

566C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Integrating Complex or Diverse Systems

Figure 5: State machine example.

The simplest way to get information from an equipment

is to :
 Use the specific method :

- The method speaks to the equipment,
- The equipment answers and the method

fills up one or several attributes,
 Layer 1 or another DS client reads the attribute

value.
This works. But, actually, when more than one client

try to access the equipment before the end of each request
and if the equipment (or the DS) is not compliant with
some design rules, a deadlock can occurs and timeout
messages are sent by to the clients (Fig. 6).

Figure 6: Deadlock.

One way to avoid this situation is to configure the
TANGO polling mode.

This specific configuration (which also can be used for
computer hardware architecture evaluation) can be
applied to each single method.

When activating the polling mode, the DS is, by the
way, in charge of calling the method at a configured
period and filling up the attributes in a buffer.

Depending on the configuration, when the attribute
changes or exceeds a specific range, an event is sent to
the clients. Each client gets directly the information from
the buffer and not using the method.

If a client tries to call a DS’method, the method is not
used, but the reading directly comes from the attribute’s
buffer (Fig. 7).

Figure 7: Polling activation.

Using a Modular Architecture for Optical
Cameras and Siemens PLCs

Usually, complex instruments (optical cameras, motor
controllers with slots) are made of sub-equipments.

The optical camera used in our first target diagnostics
uses 5 sub-equipments whose drivers can also be shared
with future cameras.

For framing cameras and streak cameras, we developed
the following drivers:

 Andor CCD
 Agilent power supply
 Kentech high voltage pulse generator
 One specific electronic board for each camera

No doubts that there will be no needs for Layer 1 to

access some very low level methods of sub-equipment.
To make this point easier for level 1 developer, we
defined the following naming convention1 :

 Each instance of sub-equipment DS will be
called BN_NameOfDriver_xxx

 Each instance of the Layer 1 connected DS will
be called HN_NameOfDriver_yyy

For framing cameras, BN driver instances will be :
 BN_CCD_001
 BN_Agilent_001
 BN_GXD_001
 BN_ElecCIIX_001

The high level DS connected to Layer 1 will be :
 HN_CIIX_001

Actually, the HN driver does the main job as the BN

driver does the more complex and dirty one!
The following Figure shows the interface organization

for framing cameras (Fig. 8).

1 Where BN stands for “Bas Niveau” i.e. “Low Level” and

HN stands for “Haut Niveau” i.e. “High Level” ; xxx and yyy are
numbers

UNKNOWN

INIT

STANDBY ALARMFAULT

MOVING

RazInformationsMaintenance,
MemoriserPosition,
ReinitialiserPositions

[fin initialisation]

TimoutInit,
AlarmBmacDefautMoteur

DefautCommunicationBMAC

AlarmBmac

init_device

MvtAxeThetaPositifLent,
MvtAxeThetaPositifRapide,
MvtAxeThetaNegatifLent,
MvtAxeThetaNegatifRapide,
MvtAxePhiPositifLent,
MvtAxePhiPositifRapide,
MvtAxePhiNegatifLent,
MvtAxePhiNegatifRapide,
Rall ierPositionTheta,
Rall ierPositionPhi,
Rall ierMemoristionTheta,
Rall ierMemoristionPhi

DefautCommunicationBMAC
DefautCommunicationBMAC

ResetDefautsResetDefauts

MouvementTermine,
ArretMouvementDefautMoteur

AlarmBMAC,
DefautTimoutMvt,
DefautTimeoutStop

DefautMoteur

Proceedings of ICALEPCS2015, Melbourne, Australia TUD3I01

Integrating Complex or Diverse Systems

ISBN 978-3-95450-148-9

567 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Figure 8: High level and Low level drivers.

Managing PLCs is quite a bit more complicated.
S7-300 Siemens PLC’s are used to manage pumps,

valves and gauges. These systems are necessary for the
hardware security equations implementations which are
very closed to the sensors.

Nevertheless, as Layer 1 and Layer 2 need to access to
individual components state (in order to forbid non
wanted actions), HN and BN conventions have been used
to write the driver in the following way:

 Low level driver for PLC access (controller,
manager and look up tables)

 High level access for individual sensors
components (valves, gauges, pumps…)

This configuration, even if it allows full access to
individual components, warranties that by the use of PLC
equations; methods can or cannot be applied. Level 1
should be able to open a valve, but, if pressure equations
written in the PLC do not complain, the HN_Valve DS
method will reject the command and will reply a verbose
error (Fig. 9).

Figure 9: PLC driver configuration.

Maintenance and Qualification GUI Tools	
In order to test, control and maintain Layer 0, we will

be using Jive (a TANGO native tool for DS
implementation usage) and some specific GUI developed
in QT/Taurus TANGO framework. Main screen gives
access to the Layer 0 TDCS and configuration menus
driven by HN DS. These tools are used for both
qualification and maintenance in locations where Layer 1
is not available.

A very low level interface let the maintenance operator
analyze specific configurations like motors interfaces or
optical cameras. In LMJ, these actions are granted by
Layer 1 (Fig. 10).

Figure 10: Maintenance GUI Tool.

Real and Virtual Modes
Every command control software is test in our ICSS

integration platform [8]. Each subsystem uses specific
software simulators that reproduce the equipment
responses to methods.

For target diagnostics, we developed two DS BN modes
by using the same Pogo architecture:

 Real mode is directly connected to the
equipment,

 Virtual mode gives responses from specific files.
Two properties for the HN DS are used :
 A Boolean that tags mode type,
 A property that gives the name of the BN driver

mode.
In both cases, the interface between HN Layer 0 and

Layer 1 remains the same.
This configuration gives also the developer, the ability

to test a full TDCS without the need of all real
equipments. For each virtual mode, XML files deliver
data and for some specific equipments, like motor
controllers, an external software can generate defaults
states. Actually, each BN DS exists in both real and
virtual mode but only the real mode is loaded inside the
facility command control.

For PLCs, the virtual mode is located inside the
controller. This software emulates PLC’s cards at the low
level interface. There is no change for HN DS but the
configuration.

LAYER 1

PANORAMA for Layer 1
Layer 1 for TDCS is developed using the French

SCADA PANORAMA E² [2]. This LMJ requirement is
necessary to insure all subsystems interfaces and protocol
access to Layers 2 and 3.

PANORAMA comes with a generic graphical and
VbScript editor. A generic framework and libraries

TUD3I01 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

568C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Integrating Complex or Diverse Systems

written for LMJ are delivered for developments but, as
PANORAMA is mostly appropriate for automation, there
was a need to interface this high level SCADA to a low
level instrumentation architecture like TANGO.

Codra developed this new TANGO to PANORAMA
interface (binding) for CEA. This interface creates a bi-
directional link between each TANGO DS object and
PANORAMA objects. In that way, a PANORAMA
software developer does not have to know anything on
the low level TANGO architecture (Fig. 11).

Figure 11: PANORAMA Binding.

A specific editor manages target diagnostics TANGO

DS libraries and scripts written in VbScript to respond to
Layer 2 sequences orders.

This binding is open source and available for free at
www.TANGO-controls.org [3].

By using TANGO for layer 0, PANORAMA for layer 1
and this new binding between these 2 layers, CEA has
now the 3 main tools for developing LMJ TDCS GUI.

A generic GUI is devoted to exchange with top layers.
In that way, future target diagnostic Layer 1 GUIs will be
like new plugins for the main interface (Fig. 12).

Figure 12: XRay Layer 1 interface.

MANAGING CONTRACTORS
Each part of a target diagnostic has been developed by

an external contractor upon CEA’s requirements. In order
reduce interface problems, we chose to give full
responsibility for the hardware contractor to take in
charge DS developments, based on the full knowledge of
his materials.

If this worked in some cases, it was not sufficient in
others, due to the misunderstanding of TANGO
architecture (which was clearly new challenge for some

industrials) and the knowledge of interfaces between sub
systems of a target diagnostic.

We wrote a “TANGO design rules guide” for new
developers which is, by now, used in the community but
was quite fresh during the beginning of our project.

Managing contractors was mostly a race between
requirements, interfaces and time scheduling.

The best advice should be to keep a developing team
that works on a low level DS skeleton, quite functional,
and make it fully industrialized once tests are sufficient.
Externalizing process should only be efficient at this very
moment.

SUMMARY
This paper describes the TDCS architecture based on

TANGO for the low level equipment driving,
PANORAMA for the high level SCADA and the new
TANGO to PANORAMA binding that makes the
bidirectional glue between both layers.

The hardware to software abstraction layer insures the
installation to keep software interfaces while equipment
upgrade. TANGO makes it.

Layer 1 architecture uses a common interface which
allows future target diagnostics software to be plugged in.

All these specifications have been chosen to guaranty

modularity and life time expectancy for :
 adding new target diagnostics
 managing heterogeneity
 using new kind of equipment for target

diagnostics
 helping upgrade computers and equipments

Reference [9] gives a full explanation on the LMJ facility
control system status report.

REFERENCES
[1] www-lmj.cea.fr
[2] uk.codra.net/panorama
[3] www.tango-controls.org/download/binding
[4] MOC3O06 : PARC : How to computerise Laser Setting on

the Megajoule Facility, ICALEPCS 2015, by S. Vermersch,
CEA/CESTA, Le Barp, 33114 France.

[5] MOPGF075 : PARC : An Automated Laser Setup System
for the Laser Megajoule Facility, ICALEPCS 2015, by J.P.
Airiau, CEA/CESTA, Le Barp, 33114 France.

[6] TUB3O04 : The LMJ System Sequences Adaptability,
ICALEPCS 2015, by Y. Tranquille-Marques CEA/CESTA,
Le Barp, 33114 France.

[7] THCOCA05 : Laser Megajoule Timing System, ICALEPCS
2013, by P. Raybaut, V. Drouet, J.J. Dupas, J. Nicoloso,
CEA/DIF, Bruyères le Châtel, 91680 France.

[8] MOCOBAB03 : The Laser Megajoule ICCS Integration
Plateforme, ICALEPCS 2013, by J.P. Arnoul, J. Fleury, A.
Mugnier, CEA/CESTA, Le Barp, 33114 France.

[9] FRA3O02, The Laser Megajoule Facility Control System
Status Report, ICALEPCS 2015, by J. Nicoloso, CEA/DIF,
Bruyères le Châtel, 91680 France.

Proceedings of ICALEPCS2015, Melbourne, Australia TUD3I01

Integrating Complex or Diverse Systems

ISBN 978-3-95450-148-9

569 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

