
ADVANCED WORKFLOW FOR EXPERIMENTAL CONTROL
D. Mannicke, N. Hauser, N. Xiong, ANSTO, Sydney, Australia

Abstract
GumTree is a java software product developed at

ANSTO and used for experimental control as well as data
visualization and treatment. In order to simplify the
interaction with instruments and optimize the available
time for scientists, a user friendly multi sample workflow
has been developed for GumTree. Within this workflow
users follow a step by step guide where they list available
samples, setup instrument configurations and even specify
sample environments. Users are then able to monitor the
acquisition process in real-time and receive estimations
about the completion time. In addition users can modify
the previously entered information, even after the
acquisition sequence has commenced. This paper will
focus on how ANSTO integrated a multi sample
workflow into GumTree [1], what approaches were taken
to allow realistic time estimations, what programming
patterns were used to separate the user interface from the
execution of the acquisition, and the future opportunities
the approach enables.

INTRODUCTION
Experiments have become more complex and involve

different instrument configurations and sample
environments. Our aim was to provide scientists with a
user friendly application that would simplify the data
acquisition process and the associated interactions with
the instrument being used as well as help them to
optimise the experimental time available.

For example with Quokka, a small angle neutron
scattering beamline at ANSTO, it is very common to set
up an experiment that requires measurements with 3
configurations, at least 7 samples and may also involve 5
different temperatures. This setup alone results in 105
single measurements which would be very time
consuming to manually prepare.

In order to increase the acceptance of the provided
solution by the scientific community, scientists and
researchers were included in the development process. We
asked about their expectations, ideas and experiences at
other facilities. We received very different and sometimes
contradicting responses. Finally we decided on a solution
that delivered a compromise. The end result is suitable for
the majority of experiments conducted on the beamlines.

Initially we assumed it would be sufficient to simply
loop-over configurations, samples and temperatures in
order to generate an acquisition sequence using existing
scripting language commands. However, in practice many
scientists desired more flexibility; they wanted to be able
to adjust the order of the acquisition sequence including
duplicate and remove measurements. The scientists also
wanted the ability to make these changes after the
acquisition sequence had commenced. The interactivity
on a running command sequence could neither be

implemented with a scripting language ‘loop’ construct
nor with a simple ‘command list’ or ‘command table’,
which are traditionally generated by unrolling nested
loops.

A key requirement from the development perspective is
that the system could be deployed and maintained on
multiple beamlines with minimal effort. Therefore we had
to develop a solution that keeps most of the
implementation generic but provides sufficient flexibility
to allow a customised user interface to be created for each
beamline.

In addition, to improve the robustness it was decided to
separate the system into a server and a rich client
application. The server was developed to run in a headless
mode on hardware with direct communication to the
instrument control system. Furthermore, the server had to
provide an interface that allows multiple clients to
monitor and control the acquisition sequence.

IMPLEMENTATION
For the implementation of the user interface, the

workflow was divided into four individual tabs where
each tab represents a different aspect of the system (See
Fig. 1). The first tab is dedicated to the sample stage; this
includes specifying the properties of the used samples as
well as the utilized sample holder. The second tab is
concerned with setting up the desired beamline
configurations which may include different sample to
detector distances and aperture configurations. The next
tab is concerned with sample environments; this is where
a user can specify different temperature ramps or
magnetic field strengths. On the final tab, the user is able
to start and stop the acquisition as well as control and
monitor the acquisition sequence.

Sample Stage Configurations

 Sample Holders
 Properties

 Configuration Scripts
 Transmission
 Scattering

Environments Acquisition

 Temperatures,
Magnets etc.

 Multi-Level

 Start and Stop
 Time Estimation
 Fine Tuning

Figure 1: Workflow aspects

In order to keep the system easy to maintain for
multiple beamlines we minimized the instrument specific
components (See Fig. 2). For example on the server side,
only an XML Schema Definition file, which is used as an

Proceedings of ICALEPCS2015, Melbourne, Australia TUB3O01

Experimental Control

ISBN 978-3-95450-148-9

521 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

beamline definition file, is necessary to describe the
elements of an acquisition sequence (e.g. Sample,
Sample-List, Configuration etc.) including what
properties it contains and their relationships. Furthermore,
only one instrument specific python script is required that
translates the instructions generated from the workflow
into commands for the instrument control system. This
product can be used on a variety of instrument control
systems or hardware abstraction layers.

On the client side, the scientific user is presented with
instrument relevant UI elements. To ensure that the client
side development is kept to a minimum, a lightweight
framework was developed to manage the client/server
communication as well as the synchronisation of the
client with the model.

Server Client

 Model Definition
 Instrument Interaction

 GUI Layout
 Bindings to Model
 Send Commands

Figure 2: Instrument specific components

To minimize on-going maintenance efforts we ensured
that most components are beamline independent (See Fig.
3); this allowed components to be shared across multiple
beamlines while still providing the flexibility to cope with
different instrument particulars. The beamline
independent components on the server include the model
database (which can be fully instantiated with the
beamline definition file). Furthermore, all algorithms
required for the time estimation as well as the
communication protocols can be shared across all
beamlines.

Server Client

 Model Database
 Communication
Protocols

 Time Estimation

 GumTree
 Model Framework

Figure 3: Beamline independent components

PROGRAMMING PATTERNS
Most influential programming design patterns were the

Model View ViewModel (MVVM) in conjunction with the
Command pattern. The MVVM pattern was developed by
Microsoft to simplify event-driven programming of user
interfaces. It consists of three components: Model,
ViewModel and View as well as bindings and commands
(See Table 1). The idea is to keep the Model and
ViewModel independent from the code and technology
used for the actual View. As a result most of the code
relating to the Model and ViewModel can be shared across

multiple beamlines and the beamline specific View can be
easily maintained.

Table 1: Components of MVVM

Component Description
Model contains the bare information that

describes the current state or content
ViewModel provides bindable properties and

commands and only the ViewModel has
direct access to the Model

View visualises the model via bindings to the
properties and commands provided by
the ViewModel

For further information, see [2], [3] and [4]; these
resources provide great information and guided tutorials.

REALISTIC TIME ESTIMATION
Neutron scattering experiment sequences managed with

this product can run for many hours, and are followed by
sample changes that may take place at any time of day. R

ealistic time estimations were therefore a crucial feature

for our scientists and thus we wanted to ensure that we are
able to provide realistic values. We implemented a s
tatistical approach that is generic enough to be used with

different beamlines as well as able to capture the
beamline specifics. Furthermore it was necessary to not
just provide a single value for the estimation but also the
uncertainty associated with it.

Since for us the beamline specific python script is the
only code that directly interacts with the Instrument
Control System we chose to add a custom profiler (via
sys.settrace) into the python layer. This profiler is able to

log

all python calls, track the arguments and record the
execution times of each function. Consequently we obtain a c

all graph with statistical metadata that also includes

state transitions of the beamline configuration. This call g
raph then allows us to execute the code with different

sets of input parameters without interacting with the
beamline hardware. For a given experiment (which may
contain multiple samples and configurations) an
accumulated time estimation can be determined.

LESSONS LEARNED
The inclusion of the scientists in the overall design

process resulted in positive feedback and ultimately
increased their desire to see the project succeed.
Involvement was facilitated by conducting review
meetings. An agile approach to development was taken
which relied heavily on the scientists being involved and
providing feedback. This approach resulted in the success
of the project and allowed us to understand the needs of
the scientists as well as mange their expectations.

TUB3O01 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

522C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experimental Control

FUTURE
One of the future advancements that the implemented

system enables is to use the collected statistics about the
instrument response times to provide information about
the history of the instrument performance regarding motor
movements. This could further be enhanced to
automatically notify instrument responsible if, for
example, certain motor movements take significantly
longer than predicted.

 Another future development could involve providing
an http web client that can be used to monitor the
acquisition sequence via a web browser on a remote
computer or smart phone. This would be particularly
useful if an experiment takes multiple hours to complete.

CONCLUSION
The advanced workflow described in this paper

provides features not implemented previously in beamline
workflows. These features include reordering, duplicating
and removing tasks from a running workflow and the
statistical method used for time estimations.

REFERENCES
[1] T. Lam, N. Hauser, A. Gotz, P. Hathaway, F.

Franceschini, H. Rayner, “GumTree, an integrated
scientific experiment environment”, Physica B 385-
386, 1330-1332 (2006)

[2] http://www.codeproject.com/Articles/100175/Model-
View-ViewModel-MVVM-Explained

[3] http://www.wpftutorial.net
[4] https://sourcemaking.com/design_patterns/command

Proceedings of ICALEPCS2015, Melbourne, Australia TUB3O01

Experimental Control

ISBN 978-3-95450-148-9

523 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

