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Abstract 
GumTree is a java software product developed at 

ANSTO and used for experimental control as well as data 
visualization and treatment. In order to simplify the 
interaction with instruments and optimize the available 
time for scientists, a user friendly multi sample workflow 
has been developed for GumTree. Within this workflow 
users follow a step by step guide where they list available 
samples, setup instrument configurations and even specify 
sample environments. Users are then able to monitor the 
acquisition process in real-time and receive estimations 
about the completion time. In addition users can modify 
the previously entered information, even after the 
acquisition sequence has commenced. This paper will 
focus on how ANSTO integrated a multi sample 
workflow into GumTree [1], what approaches were taken 
to allow realistic time estimations, what programming 
patterns were used to separate the user interface from the 
execution of the acquisition, and the future opportunities 
the approach enables. 

INTRODUCTION 
Experiments have become more complex and involve 

different instrument configurations and sample 
environments. Our aim was to provide scientists with a 
user friendly application that would simplify the data 
acquisition process and the associated interactions with 
the instrument being used as well as help them to 
optimise the experimental time available. 

For example with Quokka, a small angle neutron 
scattering beamline at ANSTO, it is very common to set 
up an experiment that requires measurements with 3 
configurations, at least 7 samples and may also involve 5 
different temperatures. This setup alone results in 105 
single measurements which would be very time 
consuming to manually prepare. 

In order to increase the acceptance of the provided 
solution by the scientific community, scientists and 
researchers were included in the development process. We 
asked about their expectations, ideas and experiences at 
other facilities. We received very different and sometimes 
contradicting responses. Finally we decided on a solution 
that delivered a compromise. The end result is suitable for 
the majority of experiments conducted on the beamlines. 

Initially we assumed it would be sufficient to simply 
loop-over configurations, samples and temperatures in 
order to generate an acquisition sequence using existing 
scripting language commands. However, in practice many 
scientists desired more flexibility; they wanted to be able 
to adjust the order of the acquisition sequence including 
duplicate and remove measurements. The scientists also 
wanted the ability to make these changes after the 
acquisition sequence had commenced. The interactivity 
on a running command sequence could neither be 

implemented with a scripting language ‘loop’ construct 
nor with a simple ‘command list’ or ‘command table’, 
which are traditionally generated by unrolling nested 
loops.  

A key requirement from the development perspective is 
that the system could be deployed and maintained on 
multiple beamlines with minimal effort. Therefore we had 
to develop a solution that keeps most of the 
implementation generic but provides sufficient flexibility 
to allow a customised user interface to be created for each 
beamline. 

In addition, to improve the robustness it was decided to 
separate the system into a server and a rich client 
application. The server was developed to run in a headless 
mode on hardware with direct communication to the 
instrument control system. Furthermore, the server had to 
provide an interface that allows multiple clients to 
monitor and control the acquisition sequence. 

IMPLEMENTATION 
For the implementation of the user interface, the 

workflow was divided into four individual tabs where 
each tab represents a different aspect of the system (See 
Fig. 1). The first tab is dedicated to the sample stage; this 
includes specifying the properties of the used samples as 
well as the utilized sample holder. The second tab is 
concerned with setting up the desired beamline 
configurations which may include different sample to 
detector distances and aperture configurations. The next 
tab is concerned with sample environments; this is where 
a user can specify different temperature ramps or 
magnetic field strengths. On the final tab, the user is able 
to start and stop the acquisition as well as control and 
monitor the acquisition sequence. 

 
Sample Stage  Configurations 

 Sample Holders 
 Properties 

  Configuration Scripts 
 Transmission 
 Scattering 

   

Environments  Acquisition 

 Temperatures, 
Magnets etc. 

 Multi-Level 

  Start and Stop 
 Time Estimation 
 Fine Tuning 

 

Figure 1: Workflow aspects 

In order to keep the system easy to maintain for 
multiple beamlines we minimized the instrument specific 
components (See Fig. 2). For example on the server side, 
only an XML Schema Definition file, which is used as an 
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beamline definition file, is necessary to describe the 
elements of an acquisition sequence (e.g. Sample, 
Sample-List, Configuration etc.) including what 
properties it contains and their relationships. Furthermore, 
only one instrument specific python script is required that 
translates the instructions generated from the workflow 
into commands for the instrument control system. This 
product can be used on a variety of instrument control 
systems or hardware abstraction layers.  

On the client side, the scientific user is presented with 
instrument relevant UI elements. To ensure that the client 
side development is kept to a minimum, a lightweight 
framework was developed to manage the client/server 
communication as well as the synchronisation of the 
client with the model. 

 
Server  Client 

 Model Definition 
 Instrument Interaction 

  GUI Layout 
 Bindings to Model 
 Send Commands 

 

Figure 2: Instrument specific components 

To minimize on-going maintenance efforts we ensured 
that most components are beamline independent (See Fig. 
3); this allowed components to be shared across multiple 
beamlines while still providing the flexibility to cope with 
different instrument particulars. The beamline 
independent components on the server include the model 
database (which can be fully instantiated with the 
beamline definition file). Furthermore, all algorithms 
required for the time estimation as well as the 
communication protocols can be shared across all 
beamlines. 

 
Server  Client 

 Model Database 
 Communication 
Protocols 

 Time Estimation 

  GumTree 
 Model Framework 

 

Figure 3: Beamline independent components 

PROGRAMMING PATTERNS 
Most influential programming design patterns were the 

Model View ViewModel (MVVM) in conjunction with the 
Command pattern. The MVVM pattern was developed by 
Microsoft to simplify event-driven programming of user 
interfaces. It consists of three components: Model, 
ViewModel and View as well as bindings and commands 
(See Table 1). The idea is to keep the Model and 
ViewModel independent from the code and technology 
used for the actual View. As a result most of the code 
relating to the Model and ViewModel can be shared across 

multiple beamlines and the beamline specific View can be 
easily maintained. 

Table 1: Components of MVVM 

Component Description 
Model contains the bare information that 

describes the current state or content 
ViewModel provides bindable properties and 

commands and only the ViewModel has 
direct access to the Model 

View visualises the model via bindings to the 
properties and commands provided by 
the ViewModel  

For further information, see [2], [3] and [4]; these 
resources provide great information and guided tutorials.

 

REALISTIC TIME ESTIMATION 
Neutron scattering experiment sequences managed with 

this product can run for many hours, and are followed by 
sample changes that may take place at any time of day. R

ealistic time estimations were therefore a crucial feature
 

for our scientists and thus we wanted to ensure that we are 
able to provide realistic values. We implemented a s
tatistical approach that is generic enough to be used with

 

different beamlines as well as able to capture the 
beamline specifics. Furthermore it was necessary to not 
just provide a single value for the estimation but also the 
uncertainty associated with it. 

Since for us the beamline specific python script is the 
only code that directly interacts with the Instrument 
Control System we chose to add a custom profiler (via 
sys.settrace) into the python layer. This profiler is able to

 
log 

all python calls, track the arguments and record the 
execution times of each function. Consequently we obtain a c

all graph with statistical metadata that also includes
 

state transitions of the beamline configuration. This call g
raph then allows us to execute the code with different 

sets of input parameters without interacting with the 
beamline hardware. For a given experiment (which may 
contain multiple samples and configurations) an 
accumulated time estimation can be determined. 

LESSONS LEARNED 
The inclusion of the scientists in the overall design 

process resulted in positive feedback and ultimately 
increased their desire to see the project succeed. 
Involvement was facilitated by conducting review 
meetings. An agile approach to development was taken 
which relied heavily on the scientists being involved and 
providing feedback. This approach resulted in the success 
of the project and allowed us to understand the needs of 
the scientists as well as mange their expectations. 
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FUTURE 
One of the future advancements that the implemented 

system enables is to use the collected statistics about the 
instrument response times to provide information about 
the history of the instrument performance regarding motor 
movements. This could further be enhanced to 
automatically notify instrument responsible if, for 
example, certain motor movements take significantly 
longer than predicted. 

 Another future development could involve providing 
an http web client that can be used to monitor the 
acquisition sequence via a web browser on a remote 
computer or smart phone. This would be particularly 
useful if an experiment takes multiple hours to complete. 

CONCLUSION 
The advanced workflow described in this paper 

provides features not implemented previously in beamline 
workflows. These features include reordering, duplicating 
and removing tasks from a running workflow and the 
statistical method used for time estimations. 
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