
THE MeerKAT GRAPHICAL USER INTERFACE TECHNOLOGY STACK 

M. Alberts*, SKA SA, Cape Town, South Africa 
F. Joubert#, SKA SA, Cape Town, South Africa

Abstract 
The South African MeerKAT radio telescope, currently 

being built some 90 km outside the small Northern Cape 
town of Carnarvon, is a precursor to the Square Kilometre 
Array (SKA) telescope and will be integrated into the 
mid-frequency component of SKA Phase 1. Providing the 
graphical user interface (GUI) for MeerKAT required a 
reassessment of currently employed technologies with a 
strong focus on leveraging modern user interface 
technologies and design techniques. An extensive 
investigation was performed to evaluate and assess 
potential GUI technologies and frameworks. The result of 
this investigative study identified a responsive web 
application for the frontend and asynchronous web server 
for the backend. In particular the AngularJS framework 
used in combination with Material Design principles, 
Websockets and other popular javascript layout and 
imaging libraries, such as D3.js, proved an ideal fit for the 
requirements of the MeerKAT GUI frontend. This paper 
will provide a summary of the user interface technology 
investigation and further expound on the whole 
technology stack adopted to provide a modern user 
interface with real time capabilities. 

INTRODUCTION 
MeerKAT is a mid-frequency “pathfinder” radio 

telescope and precursor to building the world’s largest and 
most sensitive radio telescope, the Square Kilometre 
Array (SKA). MeerKAT builds upon its own precursor, 
KAT-7 (Karoo Array Telescope), a seven-dish array 
currently being used as an engineering and science 
prototype.  

During the preliminary stages of the MeerKAT control 
and monitoring design it became evident that the current 
KAT-7 user interface and its underlying technologies have 
various shortcomings and will not scale well. This 
prompted an investigation into modern user interface 
technologies, especially web frameworks with all its 
accompanied benefits. 

This paper starts with a brief description of the design 
methodology adopted. Next, this paper provides a 
summary of the user interface technology investigation. 
As main focus, this paper presents the new MeerKAT 
GUI architecture with detail on the architecture and 
technology stack. 

METHOD 
High level requirements for the MeerKAT user 

interface were defined by System Engineering and further 

refined through bi-monthly discussions with the relevant 
stakeholders, especially the telescope operators and 
commissioners. During these meetings all requirements 
were clarified, additional operator requirements were 
defined, and mock-up displays were drawn to ensure the 
resulting interface will fulfill all the needs of the end 
users.  

Following an iterative development approach, 
combined with monthly demonstrations of prototype 
displays to relevant stakeholders, we were able to obtain 
valuable feedback that we could include in the 
development cycle. 

TECHNOLOGY INVESTIGATION 
After conducting a research exercise into GUI 

technologies for Responsive Web Design (RWD), various 
frameworks and libraries were identified. Categorising 
these GUI technologies according to their main function 
showed that few were all-in-one solutions for a user 
interface development platform. Most of them focus on a 
specific area of user interface design and should be used 
in conjunction with other libraries to construct a complete 
frontend development platform solution. 

To overcome analysis paralysis we’ve limited our 
evaluation to only a select few technology solutions based 
on industry popularity and peer recommendations, namely 
AngularJS [1], EmberJS [2] and CS-Studio BOY [3]. 

 With the help of the Control and Monitoring (CAM) 
team we identified criteria to evaluate the chosen 
technologies against while building prototypes using each 
technology as a frontend design platform. The prototypes 
were based on a typical antenna control and monitoring 
use case. The evaluation criteria included open source 
licensing, MVW (Model View Whatever) framework, 
good documentation, large example base, large active 
developer community, large scientific user community, 
pre-built standard widgets, in-house knowledge, user-
defined widgets, rapid prototyping toolset, template 
system, support for testing frameworks, 
deployment/server side simplicity, easy learning curve, 
security support (authentication/authorisation), Python 
support, flexible data-bindings and flexible layouts. 

Final scoring of the three prototyped user interface 
technologies made it clear that web technologies are best 
suited to our needs, with AngularJS coming out as the 
favourite. 

MEERKAT GUI ARCHITECTURE 

Architecture Design Overview 
On a high level, the MeerKAT user interface 

implements a client-server architecture. A frontend 
component provides the client-side functionality and a 

 ____________________________________________  

* talberts@ska.ac.za 
# fjoubert@ska.ac.za 

THHC3O01 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

1134C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools



backend component provides the server-side functions, as 
illustrated in Figure 1. 

 

Figure 1: MeerKAT GUI architecture overview. 

MeerKAT GUI Backend 
Many of the MeerKAT GUI displays require real-time 

updates of monitored data. Therefore, careful 
consideration was given to the delivery of a continuous 
data stream to the frontend. 

To enable an interactive session with real-time flow of 
data between a browser and server, the modern web 
communication technology of choice is the Websocket 
[4]. This full-duplex, single socket connection allows a 
client to send messages to a server and receive event-
driven responses without having to poll the server for a 
reply. 

Combining Websockets with a publish-subscribe design 
pattern (PubSub) allows a GUI display to subscribe to all 
monitoring points of interest and handle real-time updates 
to those monitoring points as published by the server. 

The Backend Technology Stack comprises: 
 Ubuntu 14.04 LTS Server [5] as operating system 

 Nginx [6] as Hypertext Transfer Protocol (HTTP) 
server and reverse proxy 

 Redis server [7] for PubSub 
 Python 2.7 [8] as the main programming language 
 Tornado web framework [9] for the various 

webservers supporting both normal HTTP requests 
and Websockets 

Katportal is the Python package providing all the 
backend functionality. It consists of webservers for 
authentication and authorisation, monitoring, control, 
querying system configuration and to read data from 
storage [10]. 

The monitor webserver exposes a PubSub interface 
through a Websocket connection. The protocol used for 
communicating over the Websocket is JSONRPC [11], 
which enables the server to expose methods as remote 
procedure calls. 

Typically, a client opens a Websocket connection to the 
monitor webserver and subscribe to a set of monitoring 
points on the telescope system. The monitor webserver 
maintains a collection of KATCP (Karoo Array Telescope 
Control Protocol) connections to the proxies and devices 
making up the telescope system. 

Whenever a subscribe request is received from a client, 
the monitoring point(s) of interest are registered on the 
KATCP container and also on Redis. Should the value of 
any of subscribed monitoring point change on the 
telescope system, the container will notice the value 
update event almost immediately and publish the update 
to Redis. In turn, the existing session for the client’s 
Websocket connection will be notified by Redis and the 
updated value will be sent to the client. 

Default sampling strategies for monitoring points - such 
as periodic, event-based, event-based-with-rate - are 
defined through configuration on the server, but can also 
be set to a custom update strategy by the client through 
the PubSub interface.  

The control webserver exposes a RESTful [12] 
application programming interface (API) for all control 
related tasks. Control tasks can only be performed with 
the proper authentication and authorisation. 

The authentication webserver enforces user 
authentication and authorisation depending on user roles. 
All web requests influencing the telescope system state 
(i.e. control related) have to be authorised with a login-
unique session identifier as per the Javascript Object 
Notation (JSON) Web Token standard [13]. If the 
authorisation information inside the web token matches 
the information stored at the server for the authenticated 
user making the request, the action is allowed and 
executed on the server. 

MeerKAT GUI Frontend 
The frontend is implemented as a Single-Page 

Application (SPA), which downloads all necessary 
HTML - and JavaScript files when the browser loads the 
frontend’s Uniform Resource Identifier (URI). The 
frontend then communicates with the backend via a 
RESTful API and Websockets. 

Proceedings of ICALEPCS2015, Melbourne, Australia THHC3O01

User Interfaces and Tools

ISBN 978-3-95450-148-9

1135 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



The Frontend technology stack comprises of: 
 The Google Chrome web browser [14] 
 AngularJS 1.4.x [1] 
 Document Driven Data (D3.js) [15] 
 Angular Material [16] 
 Numerous JavaScript utility libraries 

 
Each browser window or tab connects to the backend 

and can make concurrent modifications. Users go through 
an authentication process that assigns user roles, which in 
turn limits access and modifications to certain parts of the 
frontend.  

MEERKAT GUI FEATURES 

Main Display 
The frontend layout contains the following: 

 Main toolbar 
 Bottom toolbar 
 Side navigation 
 Alarm notification overlay 
 Selected display’s content 

The main toolbar contains items like navigation links, 
current UTC, local solar and sidereal time, alarm counter 
badges, and the logged-in user’s information. The bottom 
toolbar shows the current system interlock status, current 
version information and date information, including 
Julian date. The side navigation bar helps with quick 
navigation between displays. The selected display content 
occupies the rest of the space. 

Landing Page 
After a successful login, the user sees the landing page. 

The landing page is a dashboard that can be configured 
with widgets  depending on the user’s needs. Currently, 
there is a navigation widget and a NASA Astronomy 
Picture of the Day [17] widget. 

Health Displays 
    Graphical health displays were developed to assist in 
fast and efficient fault-finding. These can be placed on 
large, heads-up displays in the operator control rooms. 
These include the telescope system health overview (see 
Figure 2), represented as columns of coloured blocks and 
interactive, customisable, tree-views to show the health of 
the antennas. 

The sensor list display shows all the monitor points of 
a selected resource as a scrollable list, using colours to 
emphasise the status of the monitor points. 

The user can use regular expressions in the custom 
health view, in order to filter sensor names and build 
custom health views, displayed as blocks of colour, and 
then export these views as a URI for reuse. 

Pointing displays show where all the antennas are 
pointing, in terms of azimuth and elevation as well as 
right ascension and declination. The pointing displays can 
be configured to use either the equatorial or the horizontal 
coordinate system. 

A special weather display is used to display the current 
local weather conditions at the site. 

Alarms 
The alarm display gives the user the ability to 

acknowledge and clear alarms. Alarm notifications are 
shown as counter badges on the main toolbar and as an 

Figure 2: The telescope system health overview display. The system alarms are shown as an overlay at the top right. 
The main toolbar is displayed at the top. 

THHC3O01 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

1136C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools



overlay on each browser tab, which stays visible until the 
operator acknowledges the alarm. Every time an alarm is 
received, a different sound is played, depending on the 
severity. 

Observation Scheduling 
Observation scheduling displays allow for the 

organization and scheduling of observations per subarray. 
Subarrays are logical collections of receptors and other 
resources. The workflow starts with setting up the 
subarray by assigning of resources, setting the frequency 
band, current configuration, end product and a Control 
Authority for the observations. The subarray is then 
activated. Only a user who has a role as a Lead Operator 
or a Control Authority can modify the subarrays. 

After the subarray activation, the designated control 
authority assigns small units of work, known as schedule 
blocks, to the subarray. The schedule blocks are then 
verified and scheduled, which moves them into a list of 
observations that will be executed automatically or 
manually, depending on the scheduler mode of the 
subarray in the telescope system. 

Operator Control and Intervention 
The operator control display allows the user to execute 

various emergency operations when needed. This display 
shows the current status of all the antennas, which can be 
used to monitor the execution of the emergency 
operations. Operations include: stop observations, resume 
operations, shutdown computing etc. 

Historical Data 
The telescope system has robust data storing and 

archiving capabilities. The historical data can be queried 
using the frontend, which plots the data on a chart. 
Multiple data lines of the same type can be drawn on the 
same chart. Changes in discrete data (e.g. an antennas 
mode, which switches between ‘STOP’, ‘STOW’ and 
‘POINT’) can also be plotted. 

User Logs 
Users can create different types of logs on the user log 

and reporting display. These would typically include shift 
logs, observation logs, time-loss logs, maintenance logs 
etc. The display allows the user to specify a start and end 
time for the selected log type, a text log message and 
functionality to upload files associated with the log. The 
user can, at any time, generate a report for a log type and 
include system activity logs in the report for later review. 

Configuration and Theming 
Many of the features in the frontend can be customised 

and configured in configuration display. Configuration 
options include hiding alarm notifications, disabling 
alarm sounds, and configuring a colour theme for the 
frontend. The theming in the frontend allows the user to 
specify the colour of toolbars and buttons as well as 
selecting a dark background colour for night operations. 

CONCLUSION 
Employing a framework based on of web technologies 

allows even a complicated system to reap the various 
benefits of web based applications. The growth of 
computing power enables complicated user interface 
processing to be handed over to thick clients, reducing 
unnecessary overhead on the backend servers. 

PubSub messaging provides an excellent isolation 
between consumers and producers of data and allows for 
easy scalability. 

ACKNOWLEDGEMENTS 
We wish to thank all SKA-SA operators, engineers and 

commissioners who participated in discussions and 
provided us with insightful comments and ideas. 

 

REFERENCES 
[1] AngularJS website: https://angularjs.org/ 
[2] Ember website: http://emberjs.com/ 
[3] CS-Studio BOY website: 

http://sourceforge.net/projects/cs-studio/ 
[4] Websocket website: https://www.websocket.org/ 
[5] Ubuntu website: http://www.ubuntu.com/ 
[6] Nginx website: http://nginx.org/ 
[7] Redis website: http://redis.io/ 
[8] Python website: https://www.python.org/ 
[9] Tornado web framework website: 

http://www.tornadoweb.org/en/stable/ 
[10] M.  Slabber,  “Overview of the monitoring data 

archive used on MeerKAT”, these proceedings, 
ICALEPCS, Melbourne, Australia (2015). 

[11] JSONRPC standard website: 
http://www.jsonrpc.org/specification 

[12] R.T. Fielding, “Architectural Styles and the Design 
of Network-based Software Architectures”, Ph.D 
dissertation, Dept. Inf. and CompSc. ,  Univ. 
California, Irvine (2000). 

[13] JSON Web Token (JWT) standard website: 
http://jwt.io/ 

[14] Chrome web browser website: 
https://www.google.com/chrome/ 

[15] Document Driven Data website: http://d3js.org/ 
[16] Angular Material website: 

http://material.angularjs.org/ 
[17] NASA Astronomy Picture of the Day website: 

http://apod.nasa.gov/apod/astropix.html 
 
 
 

Proceedings of ICALEPCS2015, Melbourne, Australia THHC3O01

User Interfaces and Tools

ISBN 978-3-95450-148-9

1137 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


