
REAL-TIME DATA REDUCTION INTEGRATED INTO INSTRUMENT
CONTROL SOFTWARE

P. Mutti∗, F. Cecillon, C. Cocho, A. Elaazzouzi, Y. Le Goc, J. Locatelli, H. Ortiz
Institut Laue-Langevin, Grenoble, France

Abstract
The increasing complexity of the experimental activity

and the growing raw dataset collected during the measure-
ments pushed the integration of the data reduction softwares
within the instrument control. On-line raw data reduction
allows users to take instant decisions based on the physical
quantities they are looking for. In such a way, beam time is
optimise avoiding oversampling. Moreover, the datasets are
more consistent and the reduction procedure, becoming now
part of the sequencer workflow, is well documented and can
be saved for future use. We will report on the implementa-
tion of the on-line data reduction on several instrument at
the ILL as well as on the obtained performances.

INTRODUCTION
NOMAD is the instrument control software in use at the

Institut Laue-Langevin. It has been designed about 10 years
ago as a client/server application. The server is written in
C++ to have a direct access to the C driver layer while the
main client is written in Java to have a portable and reactive
GUI application. A number of other client applications have
been developed. Among them we can cite the Nomad Web
Spy to refresh a web page that displays monitoring infor-
mation, the Plot Screenshot Generator to generate offline
acquisition images, etc. [1]. In the current NOMAD envi-
ronment, processes and applications are running in different
languages while the communication between them is based
on CORBA [2]. Processes are started and stopped on de-
mand and they can crash: - continuous development of a
small team compared to the number of instruments - module-
based architecture with hundred of classes The crashes are
part of the problem and taken into account and may not
be considered as development mistakes. It is impossible to
perform the tests to ensure a 100% robustness.
The integration of reduction or more generally computa-

tion methods at the ILL supposes:

• run heterogeneous code (multiple languages e.g. Mat-
lab, Python, etc.) owned by scientists

• run on other computers than the instrument control PC
to avoid interferences

• running on different systems (Linux, Mac OS X, Win-
dows)

• acquisition data and computation results must be ex-
changed in an effective way

∗ mutti@ill.eu

One solution is to have a monolithic centralised server that
processes every computation request and sends the results
asynchronously. This solution requires some extra resources
to maintain the services (list of computation methods and
their update, load-balancing, etc.). Another solution is to
have a “microservices” approach [3]. The computation meth-
ods are distributed along the existing control and scientific
computers. For that we need a fluid, flexible and easy integra-
tion. We need Erlang [4] distributed proces functionalities.
In our case, those functionalities need to be integrated in
C++ and Java, including multi-process, multi-environment,
synchronisation and message queue as well as crash manage-
ment. To be able to achieve this goal, for the development
of NAPPLI we have decided to leave CORBA since it is
declining technology [5].

WHAT IS NAPPLI
NAPPLI is a very lightweight application server, very easy

to install and usable everywhere. NAPPLI stands for N appli-
cations, where N can be both interpreted as the first charac-
ter of NOMAD as well as an unknown number. A NAPPLI
server provides services for starting, stopping, synchronis-
ing and making distributed applications communicate. We
can say that it is an application-oriented middleware. The
lifecycle of remote applications can be entirely managed
within the application. The server is accompanied with a
client API in Java and C++ with a modern asynchronous
programming model using the future concept [6]. The avail-
able communication patterns between the applications are
request/response, publisher/subscriber (synchronised or not)
and return value at the end of the execution of the application.
It is possible to use the application server in a non-intrusive
way. Existing applications can be called directly without
using the provided API. In this case, the application itself
is directly responsible of communication with the outside
world. The NAPPLI services are intended to be logic and
network fault tolerant. An application can terminate with an
exception but the remote caller will be notified with an error,
so that it will be able to take the decision to restart or not
the application. The network layer also implements features
to survive to failures.

Simple Example
Figure 1 describe in a simple example the way NAPPLI

can be used.
The application App1 started by NAPPLI on the computer

A, requests the start of App2 on the computer B (Fig. 1 (A)).
Notice that there both the computers A and B are running
NAPPLI servers. In Fig. 1 (B) once App2 is running and

Proceedings of ICALEPCS2015, Melbourne, Australia THHB3O02

Experimental Control

ISBN 978-3-95450-148-9

1115 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Figure 1: Example of the use of NAPPLI.

declared a publisher, App1 subscribes to App2 and it is ready
to receive messages published by App2. In Fig. 1 (C) the
new application App3, started on computer A, connects and
subscribes to the existing App2 and it is also ready to receive
its published messages. Note that App2 declares its publisher
with a name (so that we can have multiple publishers in the
same application) and a number of subscribers. When the
number is a strictly positive n integer, the publisher can wait
for the n subscribers to be registered before sending any
message.

IMPLEMENTATION
NAPPLI was designed taking into account the disadvan-

tages of CORBA. Unlike CORBA which shares data refer-
ences through a naming service, NAPPLI shares application
instances. This is a real different approach. Thus the ap-
plications have the responsibility to organise the sharing of
their data through persistent services where NAPPLI pro-
vides patterns for communication. Internally, a NAPPLI
server is written in pure Java 8 so that it only requires a
compatible virtual machine for running. That makes it very
portable and easy to install. Moreover, NAPPLI application
instances are processes started by the server. We take ad-
vantage of the continuous Java improvement in its process
API to have a unified way to start and monitor processes
on different platforms (Linux, Mac OS X, Windows). To
organise the network services, we use the robust and reliable
ZeroMQ [7] message queue for which a 100% Java imple-
mentation called JeroMQ [8] exists. ZeroMQ is not only
an open-source library, it also provides a precise documen-
tation on how to use it in different network contexts. For
example we followed the recommendations to implement a
real synchronised publisher/subscriber pattern. Internally,
we use the Protocol Buffers [9] library to serialise and parse

messages exchanged by the application instances. Protocol
Buffers offers a portable and fast data encoding and decod-
ing. The main feature of a NAPPLI server is to start and
stop applications on its own system. For that, a NAPPLI
server is configuredwith a list of runnable applications. Each
runnable application has a list of attributes so that an appli-
cation instance can be seen as an enriched system process.
We won’t provide all the available attributes here but we can
cite:

• Name: String identifier used by clients to start an ap-
plication instance

• Multiple: yes or no, no meaning that only a single
instance of the application can run

• Restart: An application instance is restarted in case of
error termination

• Stream: The application publishes its output and error
streams to the clients

• Executable: The path to the executable

• Args: The list of arguments that are always passed to
the executable

Note that it is really important to make the difference
between an application configuration and its instances. Ap-
plications have a workflow state shown in Fig. 2.

Figure 2: NAPPLI application state workflow.

Around the Running state, there are transitional states
(Starting, Stopping, Killing, Processing Error) and terminal
states (Success, Stopped, Killed, Error). Once the process of
the application is launched, the application has the Starting
state. It becomes Running when: it remains alive for a
certain time, defined as an attribute of the application, or
the application itself changes its state to Running. When
a client requests the stop of the application, it immediately
becomes Stopping until it terminates. At that moment, its
state becomes Stopped. Notice that after the crash of an
application (segmentation fault in C++ or exception in Java),
its state becomes Error. The changes of state are all sent to
the clients of the application.
The messages that are passed between applications can

be of any type. NAPPLI provides binary messages as well
as string messages so that the programmer can choose the
encoding that can be Protocol Buffers or JSON. Arrays of

THHB3O02 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

1116C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experimental Control



integer and floating point number are also provided by con-
venience to speed up the coding. Theses messages can be
used in the different communication contexts:

• publisher/subscriber

• request/response

• return value

The return value of an application is implemented with a
publisher/subscriber so that any connected client application
receives the result. We provide a client API for C++ Java
and a Python API is planned. A minimal example in C++:
/ / Get a r e f e r e n c e t o a remote NAPPLI s e r v e r
Se r v e r s e r v e r ( ’ t c p : / / compute r . i l l . f r : 7000 ’ ) ;

/ / Check i t s a v a i l a b i l i t y
I f ( ! s e r v e r . i s A v a i l a b l e ( ) ) {

re turn ;
}

/ / S t a r t App and g e t a r e f e r e n c e t o t h e i n s t a n c e
a u t o _ p t r < a p p l i c a t i o n : : I n s t a n c e > app ;
app = s e r v e r . s t a r t ( ’App ’ ) ;

/ / Wait t e r m i n a t i o n o f app and g e t f i n a l s t a t e
a p p l i c a t i o n : : S t a t e ;
s t a t e = app−>wa i t Fo r ( ) ;

/ / Get t h e r e s u l t from app w i t h a t e x t encod ing
s t r i n g r e s u l t ;
app −> g e t R e s u l t ( r e s u l t ) ;
c ou t << ’ app␣ r e t u r n e d ␣ ’ << r e s u l t << end l ;

NAPPLI is clearly oriented towards a microservices soft-
ware architecture rather than a monolithic one, where the
various components (applications) are smaller and easy to
update and replace. It becomes now obvious how NAPPLI
fits perfectly the requirements for implementing data reduc-
tion within the instrument control workflow. Every scientific
method, resident on remote computers, can, in principle, be-
come a NAPPLI application providing it has the capabilities
to accept command-line arguments or file inputs and returns
results or file outputs.

COMPUTATION EXAMPLES
ZeroMQ provides different communication patterns that

we have implemented in NAPPLI. It enables having differ-
ent ways of writing the interactions between the instrument
control software and the computation applications. We can
define three interaction patterns depending on the computa-
tion purposes:

• Function application: the remote application is used as
a function. The input data are passed to the application
arguments and the return results are set by the NAPPLI
result functionality. The application terminates after
having set the result.

• Asynchronous server: the remote computation appli-
cation is a server. The input data are passed by a sub-
scriber connected to a publisher located in the control

server. Another publisher is located in the application
to publish the results asynchronously to the control
server.

• Synchronous server: the remote application is a server.
The input data are passed by a request of the control
server and the results are returned by the response of the
application. Even if the response can be asynchronous,
we consider the entire procedure as synchronous as we
need one response for one request that is not the case
for the asynchronous server.

Matlab Q Space Transformation
A number of Matlab scripts were written at the ILL to

transform raw detector data into Q space representations. We
run the scripts using the Matlab engine library that we can
access in C++ by a simple NAPPLI server application called
RemoteMatlab. The sequence diagram in Fig. 3 illustrates
the synchronous server as, in this case, we need to ensure to
have one image for each acquisition.

Figure 3: Synchronous server for Matlab Q space transfor-
mation.

Notice that there is a single RemoteMatlab execution for
multiple acquisitions since the Matlab engine is very slow
to initialise.

Nuclear Particle Physics Coincidences
When running long data acquisitions using a multi-

detector system composed up to several hundred channels,
the users need to have a multitude of monitoring information
to survey the quality of the data taking. If some of those
quantities can be obtained in real-time from the acquisition
electronics, some others require the knowledge of the entire
detection system and of the physical relation between the
different elements. On the other hand, those indirect quan-
tities that are not directly accessible in real-time, must be
calculated and visualised within a reasonable time. More-
over, these computations must not disturb the live data taking
which can consume lots of resources on the control server.
An asynchronous NAPPLI server, as shown in Fig. 4, fits the
requirements.

We obtain a two-way streaming of data. Partial acquisition
data are sent to the NPPCoincidence application which com-
putes and sends the results asynchronously. Notice that we
can have a single execution of the computation application
per acquisition.

Proceedings of ICALEPCS2015, Melbourne, Australia THHB3O02

Experimental Control

ISBN 978-3-95450-148-9

1117 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Figure 4: Asynchronous server for computing coincidence
rates.

CONCLUSION
We developed successfully NAPPLI to manage and or-

ganise the execution of the different applications of the in-
strument control software environment at the ILL. More
specifically it is the ideal solution to distribute and run the
scientific computations on other computers without the need
for a monolith server infrastructure. The NOMAD software
organisation tends to a microservices architecture where dif-
ferent actors have more freedom to make evolve the services
they are responsible for. At the ILL, we are at the first step
of the integration of the scientific computations in the ac-
quisition workflow. At present computations are used for
monitoring the acquisitions but soon they will be used to
take automatic decisions. NAPPLI is a generic tool that can
be reused in larger environments than the ILL and is not

reserved to data acquisition porposes only. Some more de-
velopments can be led to ensure its scalability and robustness.
But further, the concept of an application-based middleware
is proved.

REFERENCES
[1] P. Mutti et al., “Nomad more than a simple sequencer", Proc.

ICALEPCS (2011), Grenoble, France.

[2] OMG CORBA,
http://www.corba.org

[3] M. Fowler, “Microservices",
http://martinfowler.com/articles/microservices.
html

[4] J. Armstrong, “Erlang", (2010),
http://cacm.acm.org/magazines/2010/9/
98014-erlang/

[5] M. Henning, “The Rise and Fall of CORBA", (2006),
http://queue.acm.org/detail.cfm?id=1142044

[6] Henry Baker et al.(1977), “The Incremental Garbage Collec-
tion of Processes”, Proc. of the Symposium on Artificial Intel-
ligence Programming Languages, ACM Sigplan Notices 12, 8.
pp. 55–59.

[7] iMatix ZeroMQ,
http://www.zeromq.org

[8] JeroMQ,
https://github.com/zeromq/jeromq

[9] Google Protocol Buffers,
http://code.google.com/p/protobuf

THHB3O02 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

1118C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experimental Control


