
MESSAGE SIGNALLED INTERRUPTS IN MIXED-MASTER CONTROL
W. W. Terpstra, GSI, Darmstadt, Germany
M. Kreider, GSI, Darmstadt, Germany

Abstract
Timing Receivers in the FAIR control system are a com-

plex composition of multiple bus-connected components.
The bus is composed of Wishbone crossbars which connect
master devices to their controlled slaves. These crossbars
are in turn connected in master-slave relationships forming
a DAG where source nodes are masters, interior nodes are
crossbars, and terminal nodes are slaves. In current designs,
masters may be found at multiple levels in the composed
bus. Bus masters range from embedded microcontrollers to
bridges from PCIe, VME, USB, or the network.
In such a system, delivery of interrupts from controlled

slaves to masters is non-trivial. The master may reside mul-
tiple levels up the hierarchy. In the case of network control,
the master may be kilometres of fibre away. Our approach is
to use message signalled interrupts (MSI). This is especially
important as a particular slave may be controlled by different
masters depending on the use-case. MSI allows the routing
of interrupts via the same topology used in master-slave con-
trol. This paper explores the benefits, disadvantages, and
challenges uncovered by our current implementation.

INTRODUCTION
To coordinate accelerator activities at GSI, we need a hard

real-time control system. The hard real-time components of
the control system are implemented using logic chips whose
wiring can be reprogrammed in the field, called FPGAs. This
makes it possible for our existing hardware to accommodate
some of the changing requirements that arise as physicists
revise their research goals. It also means that we have a great
deal of flexibility in terms of how we build and connect the
hard real-time components inside the FPGA.
For timing receivers, we have standardized on the

pipelinedWishbone B.4 bus standard [1]. By using this open
standard inside our FPGAs, we can interface components
of our design more readily with components from CERN
and the open hardware community at large. Our experience
thus far, about six years, has shown that Wishbone strikes
a good balance between simplicity and flexibility. Simple
components can easily speak Wishbone, but the bus scales
well enough that today our FPGA designs include nearly
fifty distinct Wishbone-connected components.
In a complex system like ours, many components must

communicate with each other. Most often, this communica-
tion flows from logic components, which direct the planned
accelerator behaviour, to physical interfaces, which perform
the external signalling to control magnets, measurement
equipment, and displays. However, sometimes this commu-
nication flow must be reversed. If a magnet power supply
encounters an error condition, it must be able to notify the
components which control the system. The Wishbone stan-

Figure 1: Wishbone connects one master to one slave. Mas-
ters initiate requests. Slaves respond with success or failure.

Figure 2: A crossbar providing two slave ports and three
master ports. It internally connects each master to one slave.

dard does not include such a mechanism, and a traditional
interrupt-based system is inadequate for our needs.

This paper will explain how we have extended Wishbone
to include a notification facility, based on message signalled
interrupts (MSI). Our approach essentially mirrors the Wish-
bone bus to allow messages to flow bidirectionally through-
out the design. While this approach carries an increased
interconnect cost, it is very flexible and requires only a mi-
nor revision to the Self-Describing Bus standard [2].

WISHBONE BASICS
Wishbone is a master-slave point-to-point bus protocol.

This means that it describes how to connect a single master
to a single slave, as shown in Figure 1. All communication
is initiated by the master, which sends bus operations (reads
or writes) to the slave. The slave then executes the requested
operation and reports any resulting data and the success or
failure of the operation.
Bus operations include an address. Typically, the slave

uses the address to determine what to do with the operation.
For a slave that implements memory, the address is simply
the location in its table where the value should be read or
written. However, for most slaves, the address acts as an
indication of the type of command. Writing to a particular
address might cause the magnet to instantaneously change its
field strength. Writing to a different address might cause the
magnet to begin slowly ramping the field from one strength to
another. Reading from one address might report the current
field strength, while another address could report current or
voltage. In any case, Wishbone slaves have a fixed number
of addresses that a master can read or write.

Proceedings of ICALEPCS2015, Melbourne, Australia THHA2O03

Hardware Technology

ISBN 978-3-95450-148-9

1083 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Figure 3: Real systems often include many nested crossbars.

While a point-to-point protocol is already useful for com-
bining two components, sophisticated systems generally
need to connect more than two components together. This is
the role of a Wishbone crossbar switch, as illustrated in Fig-
ure 2. The crossbar implements several slave ports, suitable
for connecting Wishbone masters, and several master ports,
suitable for connecting slaves. Inside the crossbar are wires
which allow each master to send messages to each slave.

To decide which slave to connect to a master, the crossbar
uses theWishbone address. Recall that each slave has a fixed
number of addresses. The crossbar essentially concatenates
the slave addresses together to create one giant slave device.
The address in the first bus operation from a master is used
by the crossbar to decide which slave to connect to the master.
Thereafter, the master stays connected to that slave until their
communication is complete. If a different master wants to
access the same slave, it must wait. However, as shown in
Figure 2, two different masters can communicate with two
different slaves, without waiting.

A single crossbar is already enough to build quite compli-
cated systems. However, as the design grows in complexity,
multiple crossbars start to appear. Consider, for example, a
host motherboard with slots for inserting addon cards. The
inserted cards might contain several slaves, connected to-
gether by a card crossbar. The motherboard hosting the slots
likely also has some masters and slaves, connected by a
host crossbar. When the card is inserted, the masters in the
hosting motherboard would like to access the slaves in the
addon card. This is achieved by connecting a master port of
the host crossbar to a slave port of the card crossbar. Now
the host masters have access to the host slaves and, via the
crossbar-crossbar connection, the card slaves.

Beyond the physical need for nested crossbars in the previ-
ous example, nesting crossbars is also a useful organizational
tool. For example, CERN provides a small White Rabbit
(WR) crossbar with masters and slaves that cooperate to
precisely synchronize clocks [3]. We use this WR design as
a component in our larger system. Treating their entire WR
crossbar conceptually as a single slave component on our
larger bus allows us to cleanly separate our code from theirs.

In any case, once you have multiple nested crossbars, you
end up with a Directed Acyclic Graph (DAG) like in Figure 3.
As shown, we have masters 1, 2, and 3 connected to slaves a,
b, and c. Of course, a real system would probably include far
more masters and slaves on each crossbar, but we keep the

Figure 4: Interrupt lines connect a slave to one fixed master.

example simple for illustration. Notice that masters 2 and 3
only have access to slave c, whereas master 1 has access to
all three slaves. This is typical for a complex Wishbone bus.
When well organized, the restricted access of masters to the
bus helps us reason about the system as a whole.

THE INADEQUACY OF INTERRUPTS
As already explained, only masters initiate the exchange of

messages in the Wishbone bus. If a slave has information for
a master, it must wait for the master to read it. Unfortunately,
this model is too simplistic. Consider a slave which rarely
has anything to tell its master, but sometimes it has an urgent
message that must be delivered immediately. In this case,
the master must wastefully read the slave repeatedly, forever.
This is not always feasible, so we need a way for slaves to
signal to masters that they need service.
The classic approach is hardwired interrupt lines, as il-

lustrated in Figure 4. In this model, the slave has a single
wire (the interrupt line) with which it can signal its need for
service. During normal operation, when it has nothing to
be read out, it leaves the interrupt deasserted. Once it has
something to read, it asserts the interrupt line. This informs
the master that it must immediately read the slave. Once the
data has been read out, the slave deasserts the interrupt.
The advantage of this approach is that it is very inexpen-

sive. It only requires a single wire from slave to master. In
an FPGA, this benefit is not really important, but on a PCB
this can be a decisive factor. However, while cheap, this
approach has serious shortcomings.
Firstly, an interrupt line typically connects one slave to

one master. In Figure 4, slave c was connected to master 3.
It might well be that master 3 is the only master which ever
controls slave c, in which case this is fine. However, in our
designs, it is often the case that a slave might be controlled
via different masters depending on the deployment. For
example, we might control a timing receiver via a PCIe
slot in a PC. The same card might also be controlled over
the network or via USB. Depending on how the card is
connected, the interrupts need to go to different masters.
This is not possible in a simple interrupt line scheme.

Secondly, there are usually only a fixed number of inter-
rupt lines. In Figure 4, both slaves a and b are connected to
the same interrupt line of master 1. When the master sees

THHA2O03 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

1084C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Hardware Technology



Figure 5: MSI reverses Wishbone, allowing each slave to
send notifications to any of the masters which can control it.

an asserted interrupt line, he must check all slaves attached
to that interrupt line for the source of the interrupt. If a
master does not have support for the slave which asserted
an interrupt, it is also unable to service the interrupt. Thus,
the interrupt stays asserted and all other slaves sharing the
interrupt line are now unable to signal the master.

Thirdly, a single slave might have several reasons it asserts
an interrupt. As the interrupt line is only a single bit, it
cannot indicate the reason. Different reasons might have
different priorities. The master cannot know how urgent the
interrupt was until after it has checked all possible reasons for
the interrupt. In a bus with forty slaves, each with multiple
reasons for an interrupt, it could take a long time to determine
that the interrupt was not urgent after all.
Finally, interrupt lines break composability. We want to

freely nest crossbars for code reuse and clarity. Interrupt
lines cannot be plugged together in the same way we connect
crossbars. We would like to plug two crossbars together and
suddenly have the upper masters be granted access to the
nested slaves. However, the interrupt lines of those slaves
are probably already connected to the masters at their own
crossbar. This means that the new outer masters may be
unable to use the slaves properly.

MESSAGE SIGNALLED INTERRUPTS
One alternative to interrupt lines is Message Signalled

Interrupts (MSI). In this scheme, we allow slaves to send
messages towards masters. In a very real sense, this flips the
role of masters and slaves; see Figure 5. Wherever there was
a crossbar, it is now the slaves which initiate the message
and the masters which receive them. In our system design,
we implement this using a second Wishbone bus.

On the MSI Wishbone bus, masters are now essentially
Wishbone slaves. For clarity, we will always denote master
versus slave from the point-of-view of the regular Wishbone
bus. Since masters now receive MSI Wishbone messages,
they should provide a small address space. Each address in
this space is analogous to a distinct interrupt line. However,
16 address bits suffice for 64K interrupt lines, enough for
most uses. The MSI crossbars route messages from slaves to
masters just like the normal crossbars from master to slave.

For each type of notification they will send, slaves should
provide a configuration register to set the MSI target address.
They should also provide an enable register that indicates if

that type of notification should be sent at all. When a master
wants to receive MSIs, he puts his own address into this
target address register and enables the notification. When
the slave wants to notify the master, if this notification is
enabled, he sends a MSI out the MSI Wishbone bus to the
configured MSI target address.

The data field of the MSI can be use for parameters within
a notification. For example, consider a slave with a FIFO. It
should provide three types of MSI notifications, each with
its own configurable MSI target address: empty, full, and
level. The empty notification has either a 0 or 1 in its data
field and is sent when the FIFO changes between empty and
not empty. Likewise, the full notification sends a 0 or 1.
If enabled, the fill notification would be sent whenever the
level changes, indicating the new level in the data field.
Compared to interrupt lines, this approach resolves all

of our concerns. Firstly, any master which can control a
slave can receive MSIs from that slave; the bus topology has
all arrows between them reversed. Secondly, the masters
have many thousands of MSI addresses, and can instruct
distinct slaves to use distinct MSI addresses. Thus, a master
immediately knows which slave sent the message based on
the target address. Thirdly, if a master wants to distinguish
messages by priority, he can provide different queues on
different addresses. Then he instructs a slave to send urgent
messages to one queue and unimportant messages to another
queue. For example, he could connect a slave FIFO’s full
notification to an urgent MSI queue, disable the empty noti-
fication, and connect the fill notification to an unimportant
queue. Finally, the MSI approach is just as composable as
Wishbone, because it is Wishbone.

Clearly, this approach could double the interconnect cost
in the worst-case. However, slaves which do not generate
MSIs can be omitted, as can masters which do not receive
MSIs. Furthermore, MSI bus logic tends to be simpler on
both sides, because only writes are allowed. Nevertheless,
there is an area price to be paid for this approach. We con-
sider this an acceptable trade-off inside an FPGA.
As an optimization, when Wishbone leaves the FPGA,

we sometimes use interrupt lines behind the scenes. In this
case, a cheap interrupt-based external protocol is used to
tunnel Wishbone and MSI messages. However, this use of
interrupt lines is invisible to Wishbone masters and slaves.
It is an implementation detail of the Wishbone bridge.

ADDRESSING AND SELF-DESCRIPTION
One detail we have ignored till now in Wishbone is how

crossbars compose addresses recursively. The general idea
is that a Wishbone slave should ignore the high bits it does
not use itself. Thus, the GPIO in Figure 6 only pays attention
to the low 5 address bits. The crossbar which connects it
and the LED, inspects the 6th address bit to decide if an
operation goes to the LED or the GPIO. This means that
when accessed via this crossbar, the GPIO register 0x4 has
address 0x24 outside the crossbar. Similarly, from the CPU’s
point-of-view, that GPIO register has address 0x124.

Proceedings of ICALEPCS2015, Melbourne, Australia THHA2O03

Hardware Technology

ISBN 978-3-95450-148-9

1085 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Figure 6: Wishbone routing is recursive. Slaves and cross-
bars ignore the high address bits matched earlier on the path.

Figure 7: With shared bus resources, a master (Host CPU)
sometimes sees a slave (Mailbox) twice under two addresses.

However, this compositional approach leads to something
a bit surprising. That same GPIO register has address 0x224
from the point-of-view of the Control master. The correct
way to understand this is that an address describes a path,
not a destination. The address 0x224 tells you how to get
from the Control master to register 0x4 of the GPIO.
If addresses do not describe destinations, how do we

know what is on the bus? This answer is provided by Self-
Describing Bus (SDB) records [2]. Each crossbar includes
a small table that describes what is attached to it at each
address range. In a sense, SDB describes the outgoing ar-
rows on each crossbar. AWishbone master recursively reads
these SDB records, exploring all paths through the bus and
composing their associated addresses.
When a master finds two identical devices via SDB ex-

ploration, it presumably wants to tell them apart. This is
the job of the device driver. SDB will tell you that there are
two paths to LED devices. The driver must query the LED
slaves to discover that one LED slave should bink to indicate
network activity and the other indicates power.

The final wrinkle, which also affects MSI, can be seen in
Figure 7. Here, we have two microcontrollers (µC), each
with their own private memory and a shared mailbox. How-
ever, there is a supervisor Host CPU which has access to
both of their private memories. Diamond patterns like this
become unavoidable in larger designs. In this example, it
is clear that the Host has two paths to the mailbox. Armed
with our refined understanding of addresses, it is obvious
that this means that mailbox register 0x8 has two addresses
from the point-of-view of the Host, 0x1228 and 0x2228.

There are two paths, and so two addresses. As with identical
LEDs, it is the mailbox driver’s job to recognize that the two
addresses are just different paths to the same device.

FINDING YOUR OWN NAME
Since the MSI bus is just the normal Wishbone bus in-

verted, it should be no surprise that masters have different
addresses when viewed from different slaves. Again, ad-
dresses describe a path, not a destination.

When a master wants to receive an MSI from a slave, he
must configure the slave’s MSI target address register with
his own address. However, the master does not have a unique
address. He must use the address which describes the path
from the slave back to himself.

We have seen that masters recursively scan SDB records
to locate all paths through the bus. As the master explores
paths, he constructs the corresponding path addresses top-
down. However, on the MSI bus, the master is the target.
For this reason, a master which scans SDB should simul-
taneously construct the backwards path address from that
location on the bus to himself. This MSI path address is
constructed bottom-up. For each path found during SDB
bus enumeration, the master has a triple of information: the
SDB meta-data describing the terminal slave, the address
describing the path to that slave, and the address describing
the path from that slave back to the master.
Unfortunately, to construct the bottom-up address path

from slaves requires information about the masters in SDB.
These new records have not yet been standardized.

CONCLUSION
Wishbone scales well from simple to very complicated

bus systems. To support slave-to-master messaging in Wish-
bone, we take a MSI approach. This gives us great flexibility
at the cost of increased interconnect area. In particular, we
can combine crossbars together hierarchically while retain-
ing the ability to deliver notifications from slaves to all the
masters which might control them. To realize our design, it
is necessary to revise SDB [2] so that masters may discover
their own addresses when configuring slaves for MSI.

REFERENCES
[1] R. Herveille. WISHBONE System-on-Chip (SoC) In-

terconnection Architecture for Portable IP Cores - Re-
vision B.4, 2010. URL http://opencores.org/
opencores,wishbone.

[2] A. Rubini, W. W. Terpstra, and M. Vanga. Self-
Describing Bus (SDB) Specification for Logic Cores
- Version 1.1, April 2013. URL http://www.ohwr.
org/projects/sdb.

[3] P. Moreira, J. Serrano, T. Wlostowski, P. Loschmidt,
and G. Gaderer. White Rabbit: Sub-Nanosecond Tim-
ing Distribution over Ethernet. In International IEEE
Symposium on Precision Clock Synchronization for Mea-
surement, Control and Communication. IEEE, 2009.

THHA2O03 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

1086C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Hardware Technology


