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Abstract
Hard real-time systems guarantee by design that no dead-

line is ever missed. In a distributed environment such as
particle accelerators, there is often the extra requirement of
having diverse real-time systems synchronize to each other.
Implementations on top of general purpose multitasking op-
erating systems such as Linux generally suffer from lack of
full control of the platform. On the other hand, solutions
based on logic inside FPGAs can result in long develop-
ment cycles. A mid-way approach is presented which allows
fast software development yet guarantees full control of the
timing of the execution. The solution involves using soft
cores inside FPGAs, running single tasks without interrupts
and without an operating system underneath. Two CERN
developments are presented, both based on a unique free
and open source HDL core comprising a parameterizable
number of CPUs, logic to synchronize them and message
queues to communicate with the local host and with remote
systems. This development environment is being offered as
a service to fill the gap between Linux-based solutions and
full-hardware implementations.

BACKGROUND
Real-time controls in particle accelerators cover a broad

range of applications that have different requirements for
processing power, latency and determinism. For the purpose
of this article, we divided these into the three following
categories:
1. less than a microsecond of latency, such as beam in-

jection and extraction, low level RF, interlocks and
machine safety systems,

2. from dozens of microseconds to one millisecond, ex-
amples, power converter controls, orbit feedback or a
number of timing and event distribution systems,

3. slow controls, such as cryogenics, vacuum, positioning
or radiation monitoring.

Usually the parameter that has the highest impact on
the architecture of the control system electronics is the
worst case (never to be missed) processing latency. The
sub-microsecond controls are the exclusive domain of FP-
GAs, ASICs and dedicated analog circuitry. On the contrary,
the systems from point 3 are usually implemented on Pro-
grammable Logic Controllers (PLCs), or in many cases on
industrial PCs running non-real time operating systems.

The widest variety of controls applications lies in between
these two extremes. While the actions executed by these
systems usually have strictly specified execution times, the
data processing that triggers these actions can be done ahead
in time, provided that the processing latency is guaranteed to

Figure 1: A typical hard-real time control system.

never exceed a certain upper limit, as shown in Figure 1. For
example, the receiver of the CERNGeneral Machine Timing
(CTR) can produce pulses with 40 nanosecond resolution,
but the minimum time between reception of a timing event
and the generation of a corresponding pulse is almost one
millisecond.
The traditional design approach in such systems, using

an FPGA and developing custom HDL cores, brings several
disadvantages:

• Only a small part of the HDL code implements the
strictly timed part. In case of the CTR, these are the
counters which drive the outputs and constitute around
20 % of the total HDL code. Event reception, filter-
ing, logging and counter configuration logic has much
slower execution time constraints.

• HDL development and testing take much more time
compared to software development.

• Custom HDL cores need custom drivers, requiring ad-
ditional development manpower.

More recent designs rely on soft processor cores, such
as Xilinx MicroBlaze [1] or Altera Nios [2], which are re-
sponsible for the “slow” part, connected to custom logic
implementing the “fast” part. This reduces the development
time, but still leaves the following issues:

• No standard way of low-latency communication and
synchronization between the devices (if they form a
distributed system).

• Vendor lock-in - the cores provided by the FPGA ven-
dors are not portable to other FPGAs,

• Issues with portability of drivers and low level host soft-
ware, which are different for each FPGA manufacturer
and each application.

In this article, we present theMock Turtle (MT) - an HDL
and software framework targeted at hard real-time distributed
applications, offered as a ready to use service. MT provides:

• A deterministic multi-core CPU system that can be
freely interfaced to user logic.

• A standardized way of communication with the host
machine and (if needed) other devices in a distributed
network.
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• Optional built-in White Rabbit (WR) [3] synchroniza-
tion.

• A generic Linux device driver, user space library and a
set of GNU-based development tools.

The following chapters present the architecture of the
HDL and software stack of the MT, the project status and
future goals. We also describe the architecture of the uRV
- an open source soft CPU core, being developed at CERN
and targeted at hard-real time embedded applications.

HDL ARCHITECTURE

Figure 2: Mock Turtle Core Architecture.

Figure 2 shows a simplified block diagram of a Mock
Turtle-based system. The key ingredients of the MT design,
described in the following subsections, are:
1. Up to 8 32-bit CPU cores with a Shared Memory block.
2. Message queues, enabling communication with the host

system and optionally, remote MT nodes.
3. User cores, controlled by the MT CPUs.
4. Control and debug logic.
All these modules are interconnected using Wishbone [4]

buses, with a central, multiport crossbar SI (Shared Inter-
connect).

The CPUs and Shared Memory
MT provides a user-selectable number (1 to 8) of 32-bit

RISC processor cores, organized into Core Blocks (CBs) as
depicted in Figure 3. Each CPU has a private program and
data space, located in the FPGA internal memory, whose
contents can be uploaded at any time by the host software.
This approach allowed to maximize the determinism of code
execution by avoiding unpredictable wait states caused by
arbitration of accesses to a shared memory block. For the
same reason, the CPUs do not support interrupts - every
asynchronous request must be serviced by means of polling.

The CPU core we used was initially a modified version of
the Lattice Mico32 (LM32) [5], due to its portability, speed
and low footprint. Recent versions of theMT use the uRV
RISC-V CPU core (described in a separate section of this
article). We decided to switch to RISC-V as its architecture
looks more viable in the long term than the proprietary ar-
chitecture of LM32 (the LM32 license, despite being open
source, contains export restrictions).

In order for the CPUs to communicate with each other, the
MT core provides a Shared Memory (SMEM) block of user-
configurable size, accessible by all the CPUs in an atomic
way. The SMEM facilitates implementation of common
inter-process communication primitives such as semaphores,
mutexes, locks and queues, by providing a set of atomic
operations: add, subtract, bit set, bit clear, bit flip and test-
and-set. These operations are executed by reading or writing
to the SMEMwith the high address bits selecting the desired
atomic operation (example in Listing 1). The SMEM can
be also accessed by the host software, with the same atomic
features as those available for the CPU cores.

Figure 3: Design of the CPU Core Block (CB) in the MT.

Each CB also contains a set of Local Registers, accessible
exclusively from the CB’s own CPU. These registers let the
CPU perform the following operations without disturbing
other CPUs (i.e. without using shared resources):

• Get the current time (provided by WR or a local
counter).

• Execute accurate delays (through self-decrementing
delay generation registers).

• Poll the presence of received messages in the Message
Queues.

• Send debugging messages to the host system.

Listing 1: SMEM access semantics example

# define OFFSET_ADD 0 x00010000
# define OFFSET_TEST_SET 0 x00020000

// atomically adds x to the * var
void atomic_add ( uint32_t *var , uint32_t x)
{

*( uint32_t *) (var + OFFSET_ADD ) = x;
}

// atomically sets to * varto 1, returns
// the value of * var before set
uint32_T atomic_test_set ( uint32_t *var)
{

return *( uint32_t *) (var +
OFFSET_TEST_SET );

}

The Communication System
The communication system consists of two message

queues, shared by the CPUs. The Host Message Queue
(HMQ) passes messages between the CPUs and the host
system. The HMQ is the primary means of communication
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between the node and the host software (e.g. FESA [6]).
Presence of an outgoing message is indicated to the host by
raising an interrupt.

The optional Remote Message Queue (RMQ) exchanges
messages with remote nodes in the WR network. The Ether-
bone protocol [7], developed by GSI, is used as the transport
layer. Writing a message in the RMQ automatically sends
out a UDP packet containing the message.

Figure 4: Design of the Host Message Queue.

The structure of the HMQ is depicted in Figure 4. The
MQs are multi-word FIFOs, containing a number of unidi-
rectional communication channels called slots. Outgoing
slots transfer messages from MT CPUs to the Host or other
MT nodes. Conversely, incoming slots let the CPUs receive
messages sent by the host or the remote nodes. The number
of slots is configured by the user. Each slot can buffer a user-
configurable number of messages of configurable maximum
size. Multiple slots allow handling independent message
streams from different sources - for example, the Trigger
Distribution application [8] uses a pair of incoming/outgo-
ing slots for the control commands and a separate outgoing
slot to stream the log of executed triggers.

In order to send a message, the transmitter writes a num-
ber of words to an MQ outgoing slot and marks it as ready
to send. The receiver side gets an indication that its MQ in-
coming slot is not empty, reads out its contents and indicates
to the MQ that it has processed the message. MQs ensure
integrity of the messages: if the message is not received
completely (i.e. the Etherbone core connected to the RMQ
reported an error), it is not received at all.

Since MT is designed for hard real-time applications, the
MQs do not have any flow control: if an MQ slot becomes
full, it starts to drop the incoming messages. Users may
implement flow control in software if needed, although in all
MT applications we foresaw, any buffer contention is consid-
ered erroneous, as it may break the deterministic behavior of
the system. We are developing a Forward Error Correction
core to improve the robustness of message delivery without
using retransmission.

Connectivity
The MT can interface with the user HDL design in two

ways:

• Each CPUBlock has a Dedicated Peripheral (DP)Wish-
bone master port that can be connected to the core’s
private peripherals. For example, in the WR Trigger
Distribution [8] node, the CPU core responsible for
reading out timestamps has a Time-To-Digital Con-
verter Core connected to its DP port.

• The Shared Interconnect provides a Share Peripheral
(SP) Wishbone master, that all cores can access concur-
rently. A typical use case of the SP is connecting large
memories for storing auxiliary data or diagnostics info.

From the host side, allMT features are accessible through
a Wishbone slave port and an interrupt line. The Self De-
scribing Bus (SDB) [9] is used to automatically discover all
the MT cores in the system.

THE URV SOFT PROCESSOR
The uRV core (expanded as micro RISC-V) is a small,

robust and open source soft CPU core, targeted at deeply
embedded FPGA applications, such as the MT or the WR
PTP Core [10]. We took the following assumptions when
designing the uRV :

• Fully open (no patent/trademark limitations) and stan-
dard ISA (Instruction Set Architecture).

• Optimize for modern FPGA resources and executing
applications primarily from the FPGA’s internal mem-
ory. Balance optimization effort between clock speed
and FPGA area.

• Design with portability in mind. Separate the FPGA-
specific features from the common CPU code.

• No high level operating system facilities, such as an
MMU (Memory Management Unit). We intend the
core to run low-level deterministic applications.

We decided to use the RISC-V [11] ISA with Multiply/-
Division extension (RV32IM) [12], developed at Berkeley
University. The primary reasons were simplicity (27 base
integer instructions with clearly defined extensions), clear
legal status of the ISA and availability of high quality de-
velopment tools (recent GCC and Clang ports). Additional
reason to support RISC-V was the vivid and diverse devel-
oper community, with ongoing high-performance silicon
implementations and backing of several universities and
companies.

Core Architecture
uRV employs a modified Harvard architecture: code and

data reside in a shared 32-bit memory space, but are ac-
cessed through separate memory interfaces. Instructions
are executed by a four-stage, single-issue pipeline, shown in
Figure 5 and consisting of the following stages:

• Fetch (F), calculating the address of the next instruction
and requesting it from the memory,

• Decode (D), which also computes the immediate val-
ues (sign-extensions and bit reordering), pre-computes
the operand values for the Execute 1/Memory (X1/M)
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stage and manages the hazards by inserting empty in-
structions into the Execute stage.

• Execute 1/Memory (X1/M), which executes most of the
instructions, generates memory addresses and issues
memory read/write requests.

• Execute 2/Writeback (X2/W), which completes execu-
tion of Load, Multiply and Shift instructions and writes
the result back to the CPU registers.

Figure 5: Design of the uRV pipeline.

In parallel to the D stage, there is a Register File (RF),
hosting the 32 architectural registers (x0 - x31). The RF is
built on top of two FPGA RAM blocks, providing two read
ports and one write port, with a single clock cycle latency.

The core includes a platform-optimized barrel shifter and
multiplier (both with 2 cycle latency) and an optional, mul-
ticycle division/modulo unit. Most of the instruction results
are bypassed to achieve interlock-free execution of depen-
dent instructions, either by the Read-After-Writer (RAW)
bypass path in the RF or after the X2/W stage.
uRV supports the RISC-V Control and Status Registers

(CSRs), interrupts and a limited set of exceptions, although
the interrupt CSR layout has been simplified (with respect to
the RISC-V specification) to minimize the occupied FPGA
area. Exceptions are used to implement loads and stores at
non-aligned addresses, as well as to emulate instructions not
supported in hardware (division, modulus, upper 32 bits of
multiplication).

Design Trade-offs
In order to achieve a relatively high clock frequency, com-

bined with a reasonable area, we have applied several opti-
mizations:

• The most timing-critical instructions, such as Multi-
ply and Shift are distributed over two pipeline stages
(X1/X2).

• Multiply, Shift and Load instructions are not bypassed
to minimize the long combinatorial X2/W stage bypass
path. Instead, the D stage raises an interlock in case
of a RAW hazard. Surprisingly, with the instruction
scheduling done bymodern optimizing compilers, there
are very few situations where the result of the current
instruction is immediately needed by the next one.

• Multiplexing and bypassing of the ALU operands is
carefully split between D and X1 stages.

Despite these trade-offs, with proper instruction schedul-
ing, uRV can execute all instructions except division and
jumps in a single clock cycle. Division takes 37 clock cy-
cles, taken jumps have a constant 3-cycle penalty and missed
jumps consume one cycle.

Connectivity
The core provides two simple buses for accessing themem-

ory space, with support for memory wait states. These buses
can be connected directly to an FPGA RAM block. The
I/O peripherals are accessed through a dedicated Wishbone
master, which is controlled by a bridge connected to the data
memory bus. The internal memory buses can also connect
the CPU pipeline to the instruction/data cache (currently
under development).

Performance
An example implementation of an uRV -based system,

incorporating a GPIO port, UART and 64 kilobytes of RAM
takes 1210 LUTs, 954 FFs, 34 Block RAMs and 3 DSP cells
on a Spartan-6 series FPGA, achieving a clock speed of 100
MHz (toolchain set up to minimize area).
The core successfully passes the official RV32IM test

suite as well as the Coremark 1.0 [13] benchmark. The
comparison of Coremark scores against other popular 32-
bit architectures1 is presented in Table 1. Despite the low
footprint and several design trade-offs, uRV combined with
a modern GCC tool chain (version 5.2) performs remarkably
well.

Table 1: Coremark 1.0 Results Comparison for uRV Against
Popular 32-bit CPU Cores

Core and platform Compiler Score/MHz
uRV (Spartan-6) GCC 5.2.0 -O2 2.14
Nios II/f (Altera FPGA) GCC 4.9.2 -O2 1.87
Cortex-M3 (STM32F103) GCC 4.4.1 -O3 1.80
LM32 (MT ) GCC 4.5.3 -O3 1.78

Status and Outlook
The uRV is an ongoing project. In the nearest future, we

are planning to:
• Add a Debugging Unit and JTAG interface,
• Implement caches, enabling access to large external
memories through a Wishbone.B4 [4] or AXI4 Lite
bus.

• Add floating point support for more demanding controls
applications (e.g. power converter control).

1 Scores of the competing implementations have been taken from the official
Coremark result repository [13]. Note that Coremark measures both
the performance of the hardware and the efficiency of the C compiler.
Different compiler versions may give different scores.
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The core can be already used within the MT, and the WR
PTP core is being upgraded to use uRV.We expect significant
savings in the FPGA area due to the lower footprint and the
more compact code size of the RISC-V ISA.

SOFTWARE
The MT software stack, presented in Figure 6 is made

of three components: a Linux driver, a Linux library and a
dedicated library for real time development. All these com-
ponents together make a framework ready to be used for the
final application development. This framework helps the de-
velopers by hiding all theMT details so they can immediately
start coding the user-space and the real-time applications
running on the MT soft cores.

Figure 6: Architecture of MT software.

The driver exports all the MT features to user space:
• Cores management: load/dump the binary containing
the real-time applications to/from each soft core’s mem-
ory. Pause execution on selected cores, completely
enable/disable or reset the core.

• MQ access: send and receive messages to/from the
running real time applications. Both synchronous and
asynchronous messaging APIs are available.

• SMEM access: access any location on the shared mem-
ory in concurrency with the running real time applica-
tions.

• Debug interface: read and dump all the debugmessages
coming from the running real time applications.

Except for the SMEM access, which uses ioctl(), all
other features are usable directly from the shell through
sysfs attributes or character devices.
To optimize driver usage the framework provides a li-

brary and a Python wrapper, with the same functionality.
The library allows the developer to access directly all driver
features, listed above. On top of this, developers can build
application-specific libraries or directly write their applica-
tions. The Python wrapper can be also used for implement-
ing tests or to easily decouple the development of the host
application and the real time one.
The real time application library provides a set of tools

to ease the communication with the host system. Mainly, it
hides from the real time developer all the communication
layer with the host system so that in the real time code it is
reduced to what is really important for the real time tasks.
The library also provides functions to allow the host applica-
tion to read/write the memory locations explicitly exported

by the real time application (variables, SMEM, hardware
registers, structures).
A simple request-response communication protocol has

been defined for the communication over the HMQ between
the host and the real time application. To really take ad-
vantage of the full software stack it is suggested to use this
protocol, but developers are free to implement alternative
solutions.

PROJECT STATUS
The MT framework is the base platform for several

projects at CERN, such as:
• The Trigger Distribution system for the LHC Beam
Instability Diagnostics [8], already operational in the
LHC.

• The proof-of-concept RF over Ethernet distribution
system [8].

• The WorldFIP Master controller card [14].
MT is supported on the SVEC [15] and SPEC [16] FPGA

Mezzanine Card (FMC) carrier boards. The HDL core,
software and the documentation can be found at [17]. The
uRV CPU source code and test software is available at [18].

CONCLUSIONS
Writing C is faster and less error-prone than writing

VHDL or Verilog. A whole family of problems can benefit
from a cast into software problems while still guaranteeing
real time behavior. Mock Turtle aims at providing a modular
open source solution which can be the seed of a collabora-
tive community effort. We expect this platform to provide
a robust basis for the development of distributed hard real
time controls and data acquisition systems, reducing risks
and development time.
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