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Abstract
Closed loop stability of electron orbit feedback controllers

is affected by mismatches between the accelerator model

and the real machine. In this paper, the small gain theo-

rem is used to express analytical criteria for closed loop

stability in the presence of spatial uncertainty. It is also

demonstrated how the structure of the uncertainty models

affects the conservativeness of the robust stability results.

The robust stability criteria are applied to the Diamond elec-

tron orbit controller and bounds on the allowable size of

spatial uncertainties which guarantee closed loop stability

is determined.

INTRODUCTION
For electron orbit control, the nominal or “golden” re-

sponse matrix is used to design the controller gains. The

control system is referred to as “robust” if it is insensitive to

differences between the actual system and the model of the

system which is used to design the controller [1]. These dif-

ferences are referred to as model-plant mismatch or simply

uncertainty. The general approach for robust control design

is to find a representation of the model uncertainty and then

check for robust stability i.e. determine whether the system

remains stable for all “real” processes within the uncertainty

set. The following notation is adopted: Π is a set of possible

perturbed plant models, G0(z) is the nominal plant model
which belongs to the set Π and G(z) is the perturbed model
(representing the real plant) which also belongs to the set

Π. A norm-bounded uncertainty description is used to de-

scribe the uncertainty i.e. the set Π is generated by allowing

H∞ norm bounded perturbations in the nominal plant i.e.

Δ is a normalised perturbation with H∞ norm ≤ 1 and the
H∞-norm of a discrete operator M (z−1) is defined as

‖M ‖∞ := max
ω∈[−π,π]

σmax (G(e jω)) (1)

where M is linear, time-invariant and σmax (·) indicates the
largest singular value of the matrix.

Uncertainty can be classed as either parametric or un-

modelled dynamics. Parametric uncertainty is where the

model structure is known but some parameters are unknown

or uncertain, whereas unmodelled dynamics refers to the

case where dynamics have been neglected or missing. In

this paper, “lumped” uncertainty is considered which repre-

sents one of several sources of parametric uncertainty and/or

unmodelled dynamics. This type of uncertainty is usually

represented as multiplicative uncertainty [1] as shown in

Fig. 1a. In the case of multiplicative uncertainty,

ΠI : G(z) = G0(z)(1+WI (z)ΔI (z)); ‖Δ‖∞ ≤ 1∀ω (2)

G0

WI ΔI

+

+

G

(a) Model G0 with multiplicative uncertainty.

G0

WA ΔA

+

+

G

(b) Model G0 with additive uncertainty.

Figure 1: Uncertainty representations of real process G.

where the subscript I indicates “input” uncertainty. In the
case of additive uncertainty,

ΠA : G(z) = G0(z) +WA(z)ΔA(z); ‖Δ‖∞ ≤ 1∀ω (3)

which is shown in Fig. 1b. In each case, a weight W (z)
is introduced in order to normalise the perturbation to be

less than 1 in magnitude at each frequency and to obtain the

weight:

• for multiplicative uncertainty:

|WI (e jω) | ≥ max|G(e jω) − G0(e jω)
G0(e jω)

| ∀ω (4)

• for additive uncertainty:

|WA(e jω) | ≥ max|G(e jω) − G0(e jω) | ∀ω. (5)

The procedure for robust stability test is as follows:

1. The closed loop system is represented in the structure

shown in Fig. 2 where Δ represents the uncertainty

in the system and M is the transfer function matrix

describing the closed loop “as seen by” Δ.

2. The small gain theorem for systems represented as

Fig. 2, is applied. The theorem takes the form [1]:

Theorem 1 (Robust stability) Assuming that the
nominal system M (e jω) is stable and that the pertur-
bations Δ are stable, then the interconnected M − Δ
system in Fig. 2 is stable for all perturbations Δ,
satisfying ‖Δ‖∞ ≤ 1 (i.e. the system is robustly stable)
if and only if

‖M ‖∞ < 1. (6)
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Δ
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Figure 2: M-Δ structure for robust stability analysis.

In this paper, the robust stability test is applied to the

closed loop for the Diamond electron orbit feedback system

in the presence of uncertainty in the response matrix. Firstly,

it is demonstrated how to apply the robust stability test to the

system using the Singular Value Decomposition (SVD) of

the response matrix and secondly the Fourier decomposition

of the response matrix is used for the robust stability test.

ROBUST STABILITY ANALYSIS: SVD
METHOD

Additive Uncertainty in the Response Matrix
Consider an additive uncertainty on the response matrix

where the uncertainty is calculated from the difference be-

tween the golden and measured response matrices, such

that

R = R0 +WRΔR (7)

and the weight WR is introduced so that ‖ΔR ‖∞ ≤ 1 and

found using Eq. 5. The perturbed closed loop system using

an Internal Model Control (IMC) structure is represented in

Fig. 3 where

U (z) = −q(z)WRΨDΣ−1
[
g(z)ΦTV (z)

+g(z)ΦTRW−1
R U (z) − g(z)ΣΨTW−1U (z)

]

U (z) = −g(z)q(z)WRΨDΣ−1ΦTV (z).

(8)

Therefore the system “seen by” the uncertainty is the transfer

matrix

MR = −q(z)g(z)WRΨDΣ−1ΦT (9)

and for robust stability

γR = ‖MR ‖∞ ≤ 1, ∀ω. (10)

Multiplicative Uncertainty in Singular Values Σ0
A multiplicative uncertainty, ΔΣ in the singular values can

be represented as

Σ = Σ0 (ΔΣ + I)

ΔΣ = Σ
−1
0 Σ − I

(11)

where Σ0 is derived from the SVD of the golden response

matrix and Σ is derived from the SVD of the measured

response matrix. In this case, the uncertainty is diagonal i.e.

ΔΣ = diag{δΣ}, |δσi | ≤ 1 ∀i. (12)

The closed loop system with ΔΣ is shown in Fig. 4 where

DΣ−1 q(z) Ψ R0 g(z)

ΦT

g(z)Σ

WR ΔR

−

−

u

v

Figure 3: Additive uncertainty in R0.

DΣ−1 q(z) Σ g(z) Φ

ΦT

g(z)Σ

WΣ ΔΣ

−

−

u

v

Figure 4: Multiplicative uncertainty in Σ0.

U (z) = −WΣq(z)DΣ−1
[
g(z)V (z) + g(z)ΣW−1

Σ U (z) −
+g(z)ΣW−1

Σ U (z)
]

(13)

so that

MΣ = −q(z)g(z)WΣDΣ−1. (14)

Using the small gain theorem, for robust stability,

γΣ = ‖MΣ‖∞ ≤ 1 ∀ω. (15)

Multiplicative Uncertainty in Singular Vectors Φ0
and Ψ0
If the uncertainty is considered to be in the left singular

vectors, such that

Φ = (ΔΦ + I)Φ0
ΔΦ = ΦΦ

T
0 − I

(16)

then given the structure in Fig. 5, the transfer matrix of the

linear plant is

MΦ = −q(z)g(z)WΦΦ0DΦT (17)

and using the small gain theorem

γΦ = ‖MΦ‖∞ ≤ 1 ∀ω (18)

for robust stability.

Likewise, perturbed right singular vectors can be repre-

sented as
Ψ = Ψ0 (ΔΨ + I)

ΔΨ = Ψ0Ψ
T − I

(19)
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Figure 5: Multiplicative uncertainty in Φ0.

DΣ−1 q(z) Ψ ΨT Σ g(z)

g(z)Σ
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−

−
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Figure 6: Multiplicative uncertainty in Ψ0.

and given the structure in Fig. 6

MΨ = −q(z)g(z)WΨΨ0DΨT (20)

and robust stability

γΨ = ‖MΨ‖∞ ≤ 1 ∀ω. (21)

Robust Stability Test Results
Fig. 7 shows the value of γR, γΣ, γΦ and γΨ up to 5 kHz,

where for each test, the bound is less than 1 and therefore the

closed loop system is stable. The results can also be used

to give a margin of stability. For additive uncertainty in the

response matrix, the peak value over the range of frequencies

is γRmax = 0.2332 occurring at DC. This means that the
closed loop system is more sensitive to uncertainty at low

frequencies. Given that

‖ΔR ‖∞‖MR ‖∞ < 1 (22)

and γRmax = 0.2332, for robust stability

‖ΔR ‖∞ < 1/γRmax . (23)

This means that the uncertainty may increase by a factor

of 4.3 before the worst-case uncertainty yields instability.
Using the triangle inequality

‖R‖∞ ≤ ‖R0‖∞ + ‖ΔR ‖∞
‖R‖∞ − ‖R0‖∞ ≤ 1

γRmax

(24)

Frequency (Hz)
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

γ

10-2

10-1

100

γR

γΣ

γΦ

γΨ

Figure 7: Size of γR (red), γΣ (blue), γΦ (black) and γΨ
(magenta) across frequencies up to 5 kHz using the singular

value decomposition of the response matrix.

which gives an analytical bound on the variation of the re-

sponse matrix from the nominal.

FromFig. 7, γΣ is also at amaximum at DCwhere the peak

value is at γΣmax = 0.4999 which means that the uncertainty
in the singular values can increase by a factor of 2 for the

closed loop system to become unstable. As before, a bound

can be placed on the size of the uncertainty, i.e.

‖ΔΣ‖∞ ≤ 1/γΣmax . (25)

The uncertainty, ΔΣ, is diagonal, so a bound on each singular

value can be determined by observing that, for Eq. 25 to hold,

|δΣi | ≤ 1/γΣmax . (26)

Since

δΣi = σ
−1
0i
σi − 1 (27)

then the bound on each singular value to ensure robust sta-

bility can be expressed as

σi ≤ σ0i + σ0iγΣmax

γΣmax

. (28)

From Fig. 7, the maximum bound on MΦ and MΨ occurs
at low frequencies and is γΦmax = 0.4844 and γΨmax =

0.4431 respectively. This means that the uncertainties ΔΦ
and ΔΨ can increase by a factor of 2.1 and 2.3 respectively
before the worst case uncertainty yields instability. The

uncertainties in Φ0 and Ψ0 are not diagonal, therefore a

bound cannot be placed on the individual elements on the

matrices Φ0 and Ψ0, but only placed on the matrix norm.

From Eq. 16, a bound on Φ0 is determined as

‖Φ‖∞ ≤ ‖ΔΦΦ0‖∞ + ‖Φ0‖∞
‖Φ‖∞ ≤ ‖ΔΦ‖∞‖Φ0‖∞ + ‖Φ0‖∞
‖Φ‖∞ − ‖Φ0‖∞

‖Φ0‖∞ ≤ ‖ΔΦ‖∞
‖Φ‖∞ − ‖Φ0‖∞

‖Φ0‖∞ ≤ 1

γΦmax

(29)
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and likewise

‖Ψ‖∞ − ‖Ψ0‖∞
‖Ψ0‖∞ ≤ 1

γΨmax

(30)

gives a bound on Ψ0.

ROBUST STABILITY ANALYSIS:
FOURIER METHOD

In [2] a harmonic decomposition of the response matrix

is presented, where R is written as

R0 = Φ̂0Σ̂0Ψ̂−T0 (31)

where

Σ̂0 = diag f=−F,...,F {σ̂ f }
Φ̂0 = diagm=1,...,M {

√
βm}Re

[
ei f η̃m

]
mf

Ψ̂0 = diagn=1,...,N {
√
βn}Re

[
e−i f η̃n

]
nf

(32)

and Φ̂0 is determined by the beta function βm and normalised
phase advance ηm at BPM locations and Ψ̂0 is determined

by the beta function βn and normalised phase advance ηn
at corrector locations and Σ̂0 is determined by the Fourier

coefficients which depend on the tune ν such that

σ̂ f =
1

2π

2ν

ν2 − f 2
( f = 0, 1, 2, . . . ). (33)

Similar to the treatment using SVD, uncertainties can be

included in the matrices of the harmonic decomposition

where
Σ̂ = Σ̂0

(
ΔΣ̂ + I

)

Φ̂ =
(
ΔΦ̂ + I

)
Φ̂0

Ψ̂ = Ψ̂0
(
ΔΨ̂ + I

)
(34)

and the associated transfer matrix M for each case is as

described in Eq. 14, Eq. 17 and Eq. 20 but with the harmonic

matrix counterpart to the SVD matrices i.e.

MR = −q(z)g(z)WRΨD̂Σ̂−1Φ̂T

MΣ̂ = −q(z)g(z)WΣ̂ D̂Σ̂−1

MΦ̂ = −q(z)g(z)WΦ̂Φ̂0D̂Φ̂T

MΨ̂ = −q(z)g(z)WΨ̂Ψ̂0D̂Ψ̂T.

(35)

Fig. 8 shows the sizes of γR, γΣ̂, γΦ̂ and γΨ̂ up to 5kHz,
and for each case, the system is determined to be robustly

stable for all frequencies. The peak value of γΣ̂ is 0.3732
which means that the norm of the closed loop transfer matrix

MΣ̂ can increase by a factor of 2.7 before the system becomes

unstable. However this uncertainty in Fourier coefficients

can also give a bound on the tune. In [2] the relationship

between Fourier coefficients and the tune is given as

ΔΣ̂ = WΣ̂Δν . (36)

Frequency (Hz)
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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Figure 8: Size of γR (red), γΣ̂ (blue), γΦ̂ (black), γΨ̂ (ma-
genta) and γν (cyan) across frequencies up to 5 kHz using
the harmonic decomposition of the response matrix.

Since ‖ΔΣ̂‖∞ ≤ 1/γmaxΣ̂
then

‖Δν ‖∞ = 1

γmaxΣ̂

1

‖WΣ̂‖∞
(37)

which is the maximum allowable size of uncertainty in the

tune for the closed loop system to remain stable. The size of

γν is also shown in Fig. 8 and from the peak value, Mν can

increase by a factor of 9. This results corresponds to a tune

change of 0.2 %, which means that for very small tune drifts,
the closed loop system is guaranteed stable. The results are

however conservative as it is assumed that the only source

of uncertainty in the response matrix is from tube drift.

CONCLUSION
The small gain theorem was used to express analytical

criteria for closed loop stability in the presence of several

sources of spatial uncertainty. The robust stability test ap-

plied to the SVD matrices is useful for determining the

closed loop stability when the controller is designed us-

ing SVD. However in order to determine bounds on beam

parameters, the Fourier decomposition approach is better

suited.
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