
SIRIUS CONTROL SYSTEM: DESIGN, IMPLEMENTATION STRATEGY
AND MEASURED PERFORMANCE

J.P.S. Martins, M. Bacchetti, E.P. Coelho, R.F. Curcio, J.G.R.S. Franco, R.P. Lisboa, P.H. Nallin,
A.R.D. Rodrigues, L.D.S. Sachinelli, M.E. Silva – LNLS, Campinas, Brazil

Abstract
Sirius is a 3 GeV synchrotron light source that is being

built by the Brazilian Synchrotron Light Laboratory
(LNLS) [1]. The Control System will connect and operate
all the equipment along the whole machine. The main
goal of the Sirius Control System is to be distributed and
digitally connected in order to avoid analog signal cables.
A three-layer topology will be used [2]. The equipment
layer uses RS485 serial networks, running from 6 to 12
Mbps, with a light proprietary protocol and CPU boards
with proprietary hardware stacked on it, in order to
achieve good performance. The middle-layer,
interconnecting these serial networks, is based on
Beaglebone Black single board computer and commercial
switches. Operation layer will be composed of PC’s
running EPICS client programs. Special topology will be
used for Orbit Feedback with a dedicated commercial
10Gbps switch. This paper will discuss the details of the
Control System components, the implementation strategy
for hardware and software and show some results of the
prototypes.

INTRODUCTION

The Sirius Control System is designed to be scalable,
distributed and easy to maintain. Currently, we are
developing a generic solution for the hardware of the
Control System – analog and digital interfaces, and also
serial communications interfaces – to provide control
features for the most of Sirius systems: vacuum system,
pulsed power supplies, magnets power supplies, RF
system, etc. The main characteristic of this solution is to
be compatible with commercial low cost CPU boards. We
achieve this using the SPI standard interface. The very
first prototype for the Sirius Control System hardware
was a homemade ARM CPU board with analog and
digital modules, called PUC (Universal Control Board).
Several tests have been done with this board and modules,
and some results will be shown in this paper.

Besides the basic input/output, the hardware supports
special features for synchronous operations, like curves
for energy ramping of the booster and cycling magnets,
and a circular buffer for post mortem acquisition.

With this strategy, the Controls Group will provide a
low budget generic solution for hardware and software,
which is reliable and of good performance in order to
meet the requirements of operation of the various systems
from Sirius.

HARDWARE IMPLEMENTATIONS
The main goal of the hardware solution provided by the

Controls Group is to be easily adaptable to the equipment

being controlled, avoiding the traditional “crate
mounting” for a distributed installation, and sometimes
inside the own equipment, preventing analog signals to
travel over long distances.

Hardware Platform - GESPICON
This platform is under development and aims to be

independent of a custom CPU board (like the PUC Base
Board). Thus, any commercial CPU board, even the
Beaglebone Black, can be used as embedded controller
for the interface modules; it just has to have an SPI
peripheral and some GPIOs. Figure 1 shows the
components of the platform, called GESPICON (Generic
SPI Controller). The connection of the stacked boards
with the controller is done by a special bus, called
SPIxxCON bus. This bus has the traditional SPI pins for
serial data interchange, and some GPIOs for configuration
of the transactions. It has also the pins for power supply
and the optional use of quad-SPI features. The protocol of
this bus is capable of addressing 8 module boards with 8
SPI devices in each one. Thus, one CPU controller can
manage up to 64 SPI devices attached to it.

Figure 1: Schematic of the GESPICON hardware
platform.

Another important feature of this implementation is the
possibility to embed SPI flash memories on the interface
modules. Thus, any interface can have static information
used by the controller for auto-configuration. At boot
time, the CPU module will search for each stacked
module memories and download the data on it, which can
be:

 Source code (Python or C) for the driver
interface of the module;

 EPICS parameters for IOC configuration;
 Any parameter of the module devices;
 BSMP entities description (defined next page);

This system makes the CPU software independent of
the interface modules drivers. Any module that would be
developed in the future will be compatible with the CPU,

MOPGF158 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

456C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Project Status Reports

with no need of software upgrades. These features
increase the modularity and the flexibility of the whole
system.

PUC CPU Module
The PUC (Universal Control Board) was the very first

prototype developed by Controls Group. The CPU
module (called “base board”) is a homemade device
embedded with an ARM Cortex M4 microcontroller, with
256 KB of RAM memory and 2 MB flash memory,
running at 180 MHz. The base board also has flash and
RAM memories (external from microcontroller), which
are used to save waveforms and to hold fast acquisition
data. The main communication interface is the RS485
serial, running at 6 Mbps baudrate. Another
communication facility is the Ethernet interface. The
MAC (Media Access Control) layer is embedded in the
microcontroller and the LwIP (Lightweight IP Library)
implements the TCP/IP stack.

Analog and Digital Modules
The digital board has 8 digital inputs and 8 digital

outputs, TTL level, for digital commands and readings.
The analog board has one ADC (AD7634) and one

DAC (AD5781) both with 18 bits resolution, for analog
input and output. The working range of the converters is
from -10V to +10V. This means that the theoretical
resolution is 17 bits for 0 to +10V and 16 bits from 0 to
+5V. This module was specially designed due to the fact
that these kind of high precision interfaces are unusual to
find commercially.

Three basic tests were done with these interfaces: long
term stability, linearity and repeatability. The setup for all
tests was three PUCs with one analog board module
stacked. The analog output was connected to analog input
of the same board. The measurements were done by a 2-
channel Agilent 34420A 7½ digits multimeter and a HP
34401A 6½ digits multimeter. The multimeters were
configured with an integration time of 100 NPLC
(Number of power line cycles), and the ADCs with an
integration of 20k samples over one second.

Long Term Test was performed setting the analog
output once and measuring the multimeters and analog
input during 24 hours. Some results are presented in
Fig. 2 (analog output) and Fig. 3 (analog input).

Figure 2: Long term of analog outputs from PUC1 and
PUC3, fixed on -9V and +9V, respectively, along with
temperature (right axis).

Figure 3: Long term of analog input from PUC1 and
PUC3 (with temperature).

The result shows that stability is quite adequate. The
drift of the voltage references of the converters increases
as the output reaches the full-scale value (10V), but stays
in a reasonable value.

Linearity Test was performed setting the analog output
in 5 ranges of voltages (-9V, -5V, 0V, 5V and +9V), with
512 points around the center values. Table 1 and Table 2
below present some results of analog output module
differential non-linearity and integral non-linearity tests,
respectively.

Table 1: Analog Output Module Differential Non-
linearity

DNL PUC1 PUC2 PUC3
Range Min

(LSB)
Max

(LSB)
Min

(LSB)
Max

(LSB)
Min

(LSB)
Max

(LSB)
-9V -

0,235
0,232 -

0,165
0,168 -

0,396
0,402

-5V -
0,118

0,117 -
0,090

0,098 -
0,165

0,177

0V -
0,283

0,289 -
0,275

0,273 -
0,039

0,019

+5V -
0,138

0,138 -
0,085

0,085 -
0,161

0,170

+9V -
0,193

0,203 -
0,156

0,184 -
0,295

0,254

Table 2: Analog Output Module Integral Non-linearity

INL PUC1 PUC2 PUC3
Range Min

(LSB)
Max

(LSB)
Min

(LSB)
Max

(LSB)
Min

(LSB)
Max

(LSB)

-9V -
0,096

0,762 -
0,280

0,122 -
0,717

0,104

-5V -
0,226

0,129 -
0,248

0,059 -
0,158

0,217

0V -
0,366

0,000 -
0,409

0,000 -
0,017

0,083

+5V -
0,082

0,257 -
0,134

0,157 -
0,133

0,263

+9V -
0,224

0,294 -
0,304

0,096 -
0,249

0,428

The results of INL and DNL of all boards are adequate,
staying in ±0.5 LSB range for the analog outputs, and
±1.5 LSB range for the analog inputs.

Repeatability Test keeps the same setup. The analog
outputs were set repeatedly with the following values:

Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF158

Project Status Reports

ISBN 978-3-95450-148-9

457 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

+9V, +5V, 0, -5V and -9V, during 12 hours, at each
update, the multimeters and ADCs were read. No missing
steps were found in all measurements. The results of the
relative error at the 5 ranges are presented in Fig. 4 below.

Figure 4: Repeatability test of PUC1 analog output
(relative errors).

Beaglebone Black
The Beaglebone Black [3] is an open hardware single

board computer based on ARM Cortex A8 running at 1
GHz. The rich set of features of this hardware makes it a
good solution for an embedded platform:

 512 MB DDR3 RAM, 4GB on-board eMMC
flash storage;

 Linux operating system support;
 Flexibility and modularity;
 Fanless;
 2X real-time 32 bits microcontrollers (PRU

processors);

The Beaglebone Black fits perfectly to be used as a
high level platform for communication with the Control
System Hardware, and also as a CPU board for the
custom analog and digital interfaces of the Control
System.

To implement the fast RS485 interface, we designed a
cape board for the Beaglebone Black using an external
UART (MAX3107), which will reach up to 12 Mbps
baudrate. The interface to this component is done by the
PRU (Programmable Real-Time Unit), a real-time
processor embedded in the ARM CPU of the Beaglebone
Black (which has two PRU units). To optimize the
software design, we created a C library to interact and
manage the PRU firmware. This library has an API for
sending and receiving bytes from the external UART, and
also for configuration of the device. The result is a high-
performance serial device with great processing power
and all the facilities of an embedded Linux system.

SOFTWARE IMPLEMENTATIONS
The Sirius Control System will use EPICS middleware,

one of the most used frameworks in Particle Accelerators
Controls System. For the low level communication, we
developed a light proprietary protocol, called BSMP
(Basic Small Messages Protocol).

BSMP (Basic Small Messages Protocol)
The BSMP describes two layers of the network model:

transport and application. The transport layer transmission
unit is the packet. Each packet holds a message. The
packets in a serial network have a well defined format:
one byte for destination address, n bytes for the message
and one byte for checksum. The addressing can be
individual or in multicast groups. The protocol message in
the application layer has the first byte for command, two
bytes for size and finally n-bytes for the payload. Thus,
the whole BSMP packet has only 5 bytes of overhead, for
payloads up to 65535 bytes.

Devices using the BSMP protocol manipulate protocol
entities, which can be up to four categories: variables,
group of variables, curves and functions. To manage and
implement the BSMP protocol, a C library (and a Python
binding) was developed. The API of the library
implements all the routines for data encapsulation, de-
encapsulation, entities values attribution and protocol
validation. To develop a new hardware and use BSMP,
the developer only needs to configure the corresponding
entities.

EPICS Device Support
In order to use the EPICS facilities, we developed a

Device Support for the PUC prototype. An EPICS Soft
IOC for the Beaglebone Black master was configured,
because the low level hardware access is done via
message based devices. The Device Support driver was
created using asynDriver framework [4]. In order to
embed the BSMP and PRU Serial libraries on the driver,
we developed an Asyn Driver Support, managing the low
level communication tasks. Above the driver support,
there is an Asyn Port Driver in C++, implementing all the
parameters that the hardware could have: analog I/O,
digital I/O, waveform I/O and static configurations. The
same strategy can be used to develop the EPICS Device
Support of the new hardware over the SPIxxBUS. The
strategy of message-based devices also permits the use of
other software for low level interfaces and data structure,
like Redis IO suite [5].

SYNCHRONOUS OPERATIONS
Sirius Control System must support synchronous

procedures for many of the machine systems. As a main
example, there is the booster energy ramp, performed by
the magnet power supplies and RF systems. The Control
System hardware supports synchronous operations
broadcasting serial messages over the RS485 network, in
order to reduce the number of signals and cables from the
Timing System. Thus, the triggers only need to reach the
single board computers, which will send the broadcast
high-priority messages over the serial network, as fast as
possible.

To validate this strategy, several tests were performed.
The object of measurement is the latency between the
reception of the trigger on a single board computer and a
flag assertion on a slave node of the RS485 network. The

MOPGF158 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

458C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Project Status Reports

first test uses a Beaglebone Black with our homemade
RS485 cape as the master and three PUCs as slave nodes.
The trigger signal was a 3.3Vpp pulse, 5% duty cycle, 5
kHz, produced by a HP 3314A Function generator. As
soon as the trigger is detected at the Beaglebone Black
GPIO (PRU Unit), the master sends a high priority serial
packet over the RS485 network at 6 Mbps baudrate. The
flag used to measure the reception of the node is the
trigger for the DA converter of an analog interface
module. This setup emulates the booster energy ramp. We
run the experiment 4 times, acquiring 2 minutes of data in
each run. Table 3 shows the average of the obtained
values from the 4 runs.

Table 3: Latency Measurement Using Beaglebone Black
as Master and PUC as Slave

Latency Min
(us)

Max
(us)

Avg
(us)

Std. dev
(ns)

PUC 1 13.91 14.00 13.94 17.13
PUC 2 13.94 14.00 13.97 14.54
PUC 3 13.95 14.04 13.98 18.45

Other tests were done to evaluate the Beaglebone Black
as master and as slave on the RS485 network. In this
setup, the trigger signal is generated by the own
Beaglebone Black master node, using the PWM
peripheral. It’s a 3Vpp pulse with 2% duty cycle and 100
Hz. This signal is in a loop back to a GPIO of the PRU
processor, which sends the broadcast serial message over
the network (at 6 Mbps baudrate). The slave Beaglebone
Black PRU detects and decodes the broadcast message,
raising a flag when the packet is decoded. The results of
the measurements of the reception latency are presented
on Table 4.

We also tested the Beaglebone as master and slave but
running the software from the ARM core, under Linux
environment. The latency increased to hundreds of
microseconds and the jitter increased to tens of
microseconds, which invalidates this topology.

Table 4: Latency Measurement Using Beaglebone Black
as Master and Slave, Running Firmware on PRU
Processor

 Run

Min
(us)

Max
(us)

Avg
(us)

Std. dev
(ns)

PRU
(master)
x PRU
(slave)

1 23.89 23.99 23.94 18.91
2 23.89 23.99 23.94 18.73
3 23.89 23.99 23.94 19.36
4 23.89 23.99 23.94 18.97

The repetition rate of the Sirius Booster for top-up
operation is 2 Hz. The specification of the ramping curves
is about 1000 steps each curve. Thus, for 2 Hz operation,
the period of each step is 500 us. The results of the first
two tests prove that the system can achieve the necessary

performance for booster operation. Even if the repetition
rate increases to 5 Hz, (with 200 us each step) the latency
and jitter of the serial broadcast triggers match the
requirements. The results can be improved when using 12
Mbps baudrate on the serial network.

Another feature of this topology is the selective
interrupt configuration, when the slave nodes respond to
specific broadcast messages, allowing more flexibility for
the profile of ramping curves. This can be useful for
machine operation.

CONCLUSION
The design of the main components of Sirius Control

System was presented. The implementation strategy is to
provide a robust, modular, flexible and distributed
hardware platform for machine operation, in addition to
EPICS compatibility on the software side. The analog
modules characterization tests are quite reasonable. The
synchronous operations support proved to match the
specification of the Sirius booster energy ramp. The next
designs under development by the Controls Group will
increase the performance and flexibility of the whole
system.

REFERENCES
[1] L. Liu et. al, “Update on Sirius, the new Brazilian

Light Source”, MOPRO048, Proc. IPAC2014,
http://jacow.org

[2] J.G.R.S. Franco et. al, “Sirius Control System:
Conceptual Design”, MOMIB01, Proc.
ICALEPCS2013, http://jacow.org

[3] http://www.beagleboard.org/black
[4] http://www.aps.anl.gov/epics/modules/soft/asyn
[5] http://redis.io

Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF158

Project Status Reports

ISBN 978-3-95450-148-9

459 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

