
SIRIUS CONTROL SYSTEM: DESIGN, IMPLEMENTATION STRATEGY 
AND MEASURED PERFORMANCE 

J.P.S. Martins, M. Bacchetti, E.P. Coelho, R.F. Curcio, J.G.R.S. Franco, R.P. Lisboa, P.H. Nallin, 
A.R.D. Rodrigues, L.D.S. Sachinelli, M.E. Silva – LNLS, Campinas, Brazil 

Abstract 
Sirius is a 3 GeV synchrotron light source that is being 

built by the Brazilian Synchrotron Light Laboratory 
(LNLS) [1]. The Control System will connect and operate 
all the equipment along the whole machine. The main 
goal of the Sirius Control System is to be distributed and 
digitally connected in order to avoid analog signal cables. 
A three-layer topology will be used [2]. The equipment 
layer uses RS485 serial networks, running from 6 to 12 
Mbps, with a light proprietary protocol and CPU boards 
with proprietary hardware stacked on it, in order to 
achieve good performance. The middle-layer, 
interconnecting these serial networks, is based on 
Beaglebone Black single board computer and commercial 
switches. Operation layer will be composed of PC’s 
running EPICS client programs. Special topology will be 
used for Orbit Feedback with a dedicated commercial 
10Gbps switch. This paper will discuss the details of the 
Control System components, the implementation strategy 
for hardware and software and show some results of the 
prototypes. 

INTRODUCTION 

The Sirius Control System is designed to be scalable, 
distributed and easy to maintain. Currently, we are 
developing a generic solution for the hardware of the 
Control System – analog and digital interfaces, and also 
serial communications interfaces – to provide control 
features for the most of Sirius systems: vacuum system, 
pulsed power supplies, magnets power supplies, RF 
system, etc. The main characteristic of this solution is to 
be compatible with commercial low cost CPU boards. We 
achieve this using the SPI standard interface. The very 
first prototype for the Sirius Control System hardware 
was a homemade ARM CPU board with analog and 
digital modules, called PUC (Universal Control Board). 
Several tests have been done with this board and modules, 
and some results will be shown in this paper.  

Besides the basic input/output, the hardware supports 
special features for synchronous operations, like curves 
for energy ramping of the booster and cycling magnets, 
and a circular buffer for post mortem acquisition.  

With this strategy, the Controls Group will provide a 
low budget generic solution for hardware and software, 
which is reliable and of good performance in order to 
meet the requirements of operation of the various systems 
from Sirius. 

HARDWARE IMPLEMENTATIONS 
The main goal of the hardware solution provided by the 

Controls Group is to be easily adaptable to the equipment 

being controlled, avoiding the traditional “crate 
mounting” for a distributed installation, and sometimes 
inside the own equipment, preventing analog signals to 
travel over long distances.  

Hardware Platform - GESPICON 
This platform is under development and aims to be 

independent of a custom CPU board (like the PUC Base 
Board). Thus, any commercial CPU board, even the 
Beaglebone Black, can be used as embedded controller 
for the interface modules; it just has to have an SPI 
peripheral and some GPIOs. Figure 1 shows the 
components of the platform, called GESPICON (Generic 
SPI Controller). The connection of the stacked boards 
with the controller is done by a special bus, called 
SPIxxCON bus. This bus has the traditional SPI pins for 
serial data interchange, and some GPIOs for configuration 
of the transactions. It has also the pins for power supply 
and the optional use of quad-SPI features. The protocol of 
this bus is capable of addressing 8 module boards with 8 
SPI devices in each one. Thus, one CPU controller can 
manage up to 64 SPI devices attached to it. 

 

 

Figure 1: Schematic of the GESPICON hardware 
platform. 

Another important feature of this implementation is the 
possibility to embed SPI flash memories on the interface 
modules. Thus, any interface can have static information 
used by the controller for auto-configuration. At boot 
time, the CPU module will search for each stacked 
module memories and download the data on it, which can 
be: 

 Source code  (Python or C) for the driver 
interface of the module; 

 EPICS parameters for IOC configuration; 
 Any parameter of the module devices; 
 BSMP entities description (defined next page); 

This system makes the CPU software independent of 
the interface modules drivers. Any module that would be 
developed in the future will be compatible with the CPU, 
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with no need of software upgrades. These features 
increase the modularity and the flexibility of the whole 
system. 

PUC CPU Module 
The PUC (Universal Control Board) was the very first 

prototype developed by Controls Group. The CPU 
module (called “base board”) is a homemade device 
embedded with an ARM Cortex M4 microcontroller, with 
256 KB of RAM memory and 2 MB flash memory, 
running at 180 MHz. The base board also has flash and 
RAM memories (external from microcontroller), which 
are used to save waveforms and to hold fast acquisition 
data. The main communication interface is the RS485 
serial, running at 6 Mbps baudrate. Another 
communication facility is the Ethernet interface. The 
MAC (Media Access Control) layer is embedded in the 
microcontroller and the LwIP (Lightweight IP Library) 
implements the TCP/IP stack. 

Analog and Digital Modules 
The digital board has 8 digital inputs and 8 digital 

outputs, TTL level, for digital commands and readings. 
The analog board has one ADC (AD7634) and one 

DAC (AD5781) both with 18 bits resolution, for analog 
input and output. The working range of the converters is 
from -10V to +10V. This means that the theoretical 
resolution is 17 bits for 0 to +10V and 16 bits from 0 to 
+5V. This module was specially designed due to the fact 
that these kind of high precision interfaces are unusual to 
find commercially.  

Three basic tests were done with these interfaces: long 
term stability, linearity and repeatability. The setup for all 
tests was three PUCs with one analog board module 
stacked. The analog output was connected to analog input 
of the same board. The measurements were done by a 2-
channel Agilent 34420A 7½ digits multimeter and a HP 
34401A 6½ digits multimeter. The multimeters were 
configured with an integration time of 100 NPLC 
(Number of power line cycles), and the ADCs with an 
integration of 20k samples over one second. 

Long Term Test was performed setting the analog 
output once and measuring the multimeters and analog 
input during 24 hours. Some results are presented in    
Fig. 2 (analog output) and Fig. 3 (analog input). 

 

 

Figure 2: Long term of analog outputs from PUC1 and 
PUC3, fixed on -9V and +9V, respectively, along with 
temperature (right axis). 

 

Figure 3: Long term of analog input from PUC1 and 
PUC3 (with temperature). 

The result shows that stability is quite adequate. The 
drift of the voltage references of the converters increases 
as the output reaches the full-scale value (10V), but stays 
in a reasonable value. 

Linearity Test was performed setting the analog output 
in 5 ranges of voltages (-9V, -5V, 0V, 5V and +9V), with 
512 points around the center values. Table 1 and Table 2 
below present some results of analog output module 
differential non-linearity and integral non-linearity tests, 
respectively. 

 

Table 1: Analog Output Module Differential Non-
linearity 

DNL PUC1  PUC2  PUC3  
Range Min 

(LSB) 
Max 

(LSB) 
Min 

(LSB) 
Max 

(LSB) 
Min 

(LSB) 
Max 

(LSB) 
-9V -

0,235 
0,232 -

0,165 
0,168 -

0,396 
0,402 

-5V -
0,118 

0,117 -
0,090 

0,098 -
0,165 

0,177 

0V -
0,283 

0,289 -
0,275 

0,273 -
0,039 

0,019 

+5V -
0,138 

0,138 -
0,085 

0,085 -
0,161 

0,170 

+9V -
0,193 

0,203 -
0,156 

0,184 -
0,295 

0,254 

 

Table 2: Analog Output Module Integral Non-linearity 

INL PUC1  PUC2  PUC3  
Range Min 

(LSB) 
Max 

(LSB) 
Min 

(LSB) 
Max 

(LSB) 
Min 

(LSB) 
Max 

(LSB) 

-9V -
0,096 

0,762 -
0,280 

0,122 -
0,717 

0,104 

-5V -
0,226 

0,129 -
0,248 

0,059 -
0,158 

0,217 

0V -
0,366 

0,000 -
0,409 

0,000 -
0,017 

0,083 

+5V -
0,082 

0,257 -
0,134 

0,157 -
0,133 

0,263 

+9V -
0,224 

0,294 -
0,304 

0,096 -
0,249 

0,428 

The results of INL and DNL of all boards are adequate, 
staying in ±0.5 LSB range for the analog outputs, and 
±1.5 LSB range for the analog inputs. 

Repeatability Test keeps the same setup. The analog 
outputs were set repeatedly with the following values: 
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+9V, +5V, 0, -5V and -9V, during 12 hours, at each 
update, the multimeters and ADCs were read. No missing 
steps were found in all measurements. The results of the 
relative error at the 5 ranges are presented in Fig. 4 below. 

 

 
Figure 4: Repeatability test of PUC1 analog output 
(relative errors). 

 

Beaglebone Black 
The Beaglebone Black [3] is an open hardware single 

board computer based on ARM Cortex A8 running at 1 
GHz. The rich set of features of this hardware makes it a 
good solution for an embedded platform: 

 512 MB DDR3 RAM, 4GB on-board eMMC 
flash storage; 

 Linux operating system support; 
 Flexibility and modularity; 
 Fanless; 
 2X real-time 32 bits microcontrollers (PRU 

processors); 

The Beaglebone Black fits perfectly to be used as a 
high level platform for communication with the Control 
System Hardware, and also as a CPU board for the 
custom analog and digital interfaces of the Control 
System.  

To implement the fast RS485 interface, we designed a 
cape board for the Beaglebone Black using an external 
UART (MAX3107), which will reach up to 12 Mbps 
baudrate. The interface to this component is done by the 
PRU (Programmable Real-Time Unit), a real-time 
processor embedded in the ARM CPU of the Beaglebone 
Black (which has two PRU units). To optimize the 
software design, we created a C library to interact and 
manage the PRU firmware. This library has an API for 
sending and receiving bytes from the external UART, and 
also for configuration of the device. The result is a high-
performance serial device with great processing power 
and all the facilities of an embedded Linux system. 

SOFTWARE IMPLEMENTATIONS 
The Sirius Control System will use EPICS middleware, 

one of the most used frameworks in Particle Accelerators 
Controls System. For the low level communication, we 
developed a light proprietary protocol, called BSMP 
(Basic Small Messages Protocol).  

BSMP (Basic Small Messages Protocol) 
The BSMP describes two layers of the network model: 

transport and application. The transport layer transmission 
unit is the packet. Each packet holds a message. The 
packets in a serial network have a well defined format: 
one byte for destination address, n bytes for the message 
and one byte for checksum. The addressing can be 
individual or in multicast groups. The protocol message in 
the application layer has the first byte for command, two 
bytes for size and finally n-bytes for the payload. Thus, 
the whole BSMP packet has only 5 bytes of overhead, for 
payloads up to 65535 bytes.  

Devices using the BSMP protocol manipulate protocol 
entities, which can be up to four categories: variables, 
group of variables, curves and functions. To manage and 
implement the BSMP protocol, a C library (and a Python 
binding) was developed. The API of the library 
implements all the routines for data encapsulation, de-
encapsulation, entities values attribution and protocol 
validation. To develop a new hardware and use BSMP, 
the developer only needs to configure the corresponding 
entities.   

EPICS Device Support 
In order to use the EPICS facilities, we developed a 

Device Support for the PUC prototype. An EPICS Soft 
IOC for the Beaglebone Black master was configured, 
because the low level hardware access is done via 
message based devices. The Device Support driver was 
created using asynDriver framework [4]. In order to 
embed the BSMP and PRU Serial libraries on the driver, 
we developed an Asyn Driver Support, managing the low 
level communication tasks. Above the driver support, 
there is an Asyn Port Driver in C++, implementing all the 
parameters that the hardware could have: analog I/O, 
digital I/O, waveform I/O and static configurations. The 
same strategy can be used to develop the EPICS Device 
Support of the new hardware over the SPIxxBUS. The 
strategy of message-based devices also permits the use of 
other software for low level interfaces and data structure, 
like Redis IO suite [5].     

SYNCHRONOUS OPERATIONS 
Sirius Control System must support synchronous 

procedures for many of the machine systems. As a main 
example, there is the booster energy ramp, performed by 
the magnet power supplies and RF systems. The Control 
System hardware supports synchronous operations 
broadcasting serial messages over the RS485 network, in 
order to reduce the number of signals and cables from the 
Timing System. Thus, the triggers only need to reach the 
single board computers, which will send the broadcast 
high-priority messages over the serial network, as fast as 
possible. 

To validate this strategy, several tests were performed. 
The object of measurement is the latency between the 
reception of the trigger on a single board computer and a 
flag assertion on a slave node of the RS485 network. The 
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first test uses a Beaglebone Black with our homemade 
RS485 cape as the master and three PUCs as slave nodes. 
The trigger signal was a 3.3Vpp pulse, 5% duty cycle, 5 
kHz, produced by a HP 3314A Function generator. As 
soon as the trigger is detected at the Beaglebone Black 
GPIO (PRU Unit), the master sends a high priority serial 
packet over the RS485 network at 6 Mbps baudrate. The 
flag used to measure the reception of the node is the 
trigger for the DA converter of an analog interface 
module. This setup emulates the booster energy ramp. We 
run the experiment 4 times, acquiring 2 minutes of data in 
each run. Table 3 shows the average of the obtained 
values from the 4 runs. 

 

Table 3: Latency Measurement Using Beaglebone Black 
as Master and PUC as Slave 

Latency Min 
(us) 

Max  
(us) 

Avg 
(us) 

Std. dev  
(ns) 

PUC 1 13.91 14.00 13.94 17.13 
PUC 2 13.94 14.00 13.97 14.54 
PUC 3 13.95 14.04 13.98 18.45 

 

Other tests were done to evaluate the Beaglebone Black 
as master and as slave on the RS485 network. In this 
setup, the trigger signal is generated by the own 
Beaglebone Black master node, using the PWM 
peripheral. It’s a 3Vpp pulse with 2% duty cycle and 100 
Hz. This signal is in a loop back to a GPIO of the PRU 
processor, which sends the broadcast serial message over 
the network (at 6 Mbps baudrate). The slave Beaglebone 
Black PRU detects and decodes the broadcast message, 
raising a flag when the packet is decoded. The results of 
the measurements of the reception latency are presented 
on Table 4. 

We also tested the Beaglebone as master and slave but 
running the software from the ARM core, under Linux 
environment. The latency increased to hundreds of 
microseconds and the jitter increased to tens of 
microseconds, which invalidates this topology. 

 

Table 4: Latency Measurement Using Beaglebone Black 
as Master and Slave, Running Firmware on PRU 
Processor 

 Run 
# 

Min 
(us) 

Max 
(us) 

Avg 
(us) 

Std. dev 
(ns) 

PRU 
(master) 
x PRU 
(slave)  

1 23.89 23.99 23.94 18.91 
2 23.89 23.99 23.94 18.73 
3 23.89 23.99 23.94 19.36 
4 23.89 23.99 23.94 18.97 

 

The repetition rate of the Sirius Booster for top-up 
operation is 2 Hz. The specification of the ramping curves 
is about 1000 steps each curve. Thus, for 2 Hz operation, 
the period of each step is 500 us. The results of the first 
two tests prove that the system can achieve the necessary 

performance for booster operation. Even if the repetition 
rate increases to 5 Hz, (with 200 us each step) the latency 
and jitter of the serial broadcast triggers match the 
requirements. The results can be improved when using 12 
Mbps baudrate on the serial network. 

Another feature of this topology is the selective 
interrupt configuration, when the slave nodes respond to 
specific broadcast messages, allowing more flexibility for 
the profile of ramping curves. This can be useful for 
machine operation.  

CONCLUSION 
The design of the main components of Sirius Control 

System was presented. The implementation strategy is to 
provide a robust, modular, flexible and distributed 
hardware platform for machine operation, in addition to 
EPICS compatibility on the software side. The analog 
modules characterization tests are quite reasonable. The 
synchronous operations support proved to match the 
specification of the Sirius booster energy ramp. The next 
designs under development by the Controls Group will 
increase the performance and flexibility of the whole 
system.   
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