
INTEGRATION OF PLC'S IN TANGO CONTROL SYSTEMS USING PyPLC

S.Rubio-Manrique, M.Broseta, G.Cuní, D.Fernández-Carreiras, A.Rubio,
J.Villanueva, ALBA-CELLS, Cerdanyola del Vallés, Barcelona, Spain

Abstract
The Equipment Protection Systems and Personnel

Safety Systems of the ALBA Synchrotron are complex
and highly distributed control systems based on PLC's
from different vendors. EPS and PSS not only regulate the
interlocks of the whole ALBA facility but provide a large
network of analog and digital sensors that collect
information from all subsystems; as well as its logical
states. TANGO is the Control System framework used at
ALBA, providing several tools and services (GUI's,
Archiving, Alarms) in which EPS and PSS systems must
be integrated. PyPLC, a dynamic Tango device, have been
developed in python to provide a flexible interface and
enable PLC developers to automatically update it. This
paper describes how protection systems and the PLC code
generation cycle have been fully integrated within
TANGO Control System at ALBA.

INTRODUCTION

ALBA[1], member of the Tango Collaboration[2][3], is
a third generation Synchrotron in Barcelona, Spain. It
provides light since 2012 to users through its 7
beamlines,with 2 more under construction. The ALBA
Control Section (ACS) is currently formed by 16
engineers devoted to the development of our Tango-based
SCADA frameworks (Taurus[4], Sardana[5][6] and
PANIC[7]) and PLC systems.

The ALBA Equipment and Personnel Protection
Systems[8][9] (EPS and PSS) are distributed PLC-based
systems autonomous from the Tango Control System.
Both EPS and PSS are homogeneous systems based on
single vendors (B&R and Pilz respectively). While the
tasks to be done by the PSS are clearly specified and
delimited by the ALBA Safety Group, the EPS PLC's
became instead a versatile system that has been adapted
for interlock, acquisition and motion control in both
accelerators and beamlines.

Although other PLC based systems are used in ALBA
to control the RF circulators, bakeout controllers and
water or air cooling systems; the EPS is the most complex
system managed by PLC's, using 58 B&R CPU's and 110
periphery cabinets to collect more than 7000 signals. In
addition to the main purpose of protection, several
hundreds of signals distributed across the whole system
are acquired for diagnostics and control of pressures,
temperatures and movable elements

The integration of the management of an independent
system like EPS in the Tango Control System required of
several phases, starting from the collection of cables from
the Cabling Database to the final auto-generation of GUI's
for both EPS Expert GUI and operator users (Taurus) .

GENERATION OF CODE VARIABLES

The Cabling and Controls Database

Every cable and equipment installed in the ALBA
Synchrotron is registered in our Cabling and Controls
Database (CCDB). Developed in 2007[10] by our
Management and Information Software section (MIS)
using MySQL and web technologies, it was the main
support tool for the design and construction phase and
now it is still kept updated as the main repository of
equipments and configurations in our Accelerators and
Beamlines. As of 2015 it lists 385 racks with 7131
equipments of different 874 equipment types. These
equipments are connected using 20053 cables of 487
different cable types with a total length of 172.26 Km.

The CCDB provides, for each of our PLC CPU's or
remote peripherals, the full list of connected devices, its
equipment types, cable configurations, terminal used and
the distribution of hardware in racks, including the
routing of cables between hardware and control devices
(Fig. 1). It also provides fast access to all available
documentation for each type of equipment.

Figure 1: Diagrams of every subsystem have been
produced prior to its introduction in our cabling database.

The PLC Auto-Generation Tool

The CCDB python API[11] provides full access to the
Cabling Database from our control system tools. The API
methods allow to search for equipments and get lists of
connections, names and network information. These links
are used to enable our Auto-Generation coding tool
correlating the information of the equipments from the
CCDB with the logics defined for them in the EPS.

To do so, all the common elements of our different
Equipment Protection Systems have been standardized in

Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF140

Personnel Safety and Machine Protection

ISBN 978-3-95450-148-9

413 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

our EPS_LIBRARY project. This library, later exported to
our different CPU sub-projects, provides the standard
logic behavior for managing each equipment type
connected to the PLC and its remotes. These standard
procedures include managing in/out digital signals for
valves, alarm/warning ranges for analog values, value
conversions for thermocouples, linear correlation for 4-20
mA transducers and standard conversion scales for
flowmeters amongst others.

For each CPU of the EPS, the PLC Auto-Generation
tool (Fig. 2) extracts exhaustive reports of all equipments
connected to the CPU and its remotes, parses the naming
of these equipments and its logics depending on the cable
and terminal connectors used in both sides (along with
notations introduced by the Controls or Electronics
engineers). This full cable report is later translated to a
full list of the PLC variables with its matching PLC code
structures.

Figure 2: PLC Auto-Generation tool.

These steps does not produce the final code of the PLC,
but a detailed guide of the structures to be generated. The
control engineer then must coordinate logics of individual
variables and program the most specific logics of every
beamline or accelerators section, being capable of
focusing in the most critical parts instead of the tedious
and iterative variable naming.

The processes for auto-generation of code variables
were originally developed using visual basic, which
required manual extraction from database and generated
static reports. Migrating these procedures to python
allowed to develop tools that can be executed
automatically, enabling the automatization of regular code
review and error checking.

The final output of the auto-generation process is the
variable modbus mapping spreadsheet, commonly known
as the EPS CSV. This file will be used later to generate
the EPS Expert GUI and the Tango Attributes used by
User-Level GUI's.

PLC TANGO DEVICE SERVERS

PLC's at Alba are accessed using two protocols: Fetch
& Write for Siemens PLC's (cooling systems) and
Modbus (over TCP or RS485) for the rest of systems,
including EPS.

Figure 3: Structure of the PyPLC device server.

All Modbus-based PLC's are accessed using the
PyPLC[12] device server. This python device server[13]
(in use since 2008) have been developed over the
Modbus C++ (Fig.3) device class to allow four different
types of access:

• Directly executing Modbus commands in the PyPLC

device server, direct actions mapped to specific bits
(e.g., open Front-End).

• Reading the whole Modbus address space into array

attributes, method optimized to get maximum update
frequency, used by the Expert GUI.

• Exporting EPS variables as individual Tango

attributes, thus enabling Tango features like ranges,
alarms, archiving, labels, etc.

• Exporting EPS variables as individual Tango devices,

typically valves with its own Open/Close commands.

The PyPLC exports the most standard Modbus
commands (Read/Write Input/Holding Registers) and
PLC variable types (Coil / Flag / Int / Long / Float / Ieee
Float). This PyTango device server uses the Fandango
Dynamic Attributes [14] template to generate new
attributes at runtime based on user-defined formulas
(Table 1). These dynamic generation of attributes boosted
the initial prototyping of the devices, providing enough
functionality for the most elementary systems
(temperature controllers, stand-alone PLC's) and allowing
to customize the attribute generation done by the EPS
Auto-generation tools.

Table 1: PyPLC Attribute Formulas, an Array, a

TEMPERATURES=
 DevVarLongArray(Regs(7800,100))
DIO_01= bool(
 READ and Flag(80,7) or
 WRITE and WriteFlag(81,7,VALUE))
Open_PNV01=(WriteBit(193,2,1),1)[-1]

Close_PNV01=(WriteBit(193,1,1),0)[-1]

Writable Boolean Flag and Two Commands

MOPGF140 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

414C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Personnel Safety and Machine Protection

User-defined formulas allowed to create meta variables
(e.g. BL_READY) or special commands to be used in
PANIC Alarms [15] or our Sardana Experimental
Framework to control pneumatic devices in the Beamline
(Table 1).

As of 2015 both the automatic-generated variables and
the user-defined variables are stored as properties in the
Tango Database, being the new beamline MIRAS [16] the
first in which all standard attributes will be generated
from EPS CSV files instead; reserving Dynamic
Attributes formulas only for special behaviors. This is
done using the AlbaPLC, a PyPLC subclass that
implements in the Tango side the data structures of the
EPS_LIBRARY.

HUMAN MACHINE INTERFACES TO EPS

EPS GUI's

The current application developed to interact with the
EPS system is the EPS Expert GUI (Fig. 4). This
application loads all the modbus mapped variables from
the PLC and organizes the whole memory structure in
several tabbed panels, grouped by variable type.

From the EPS GUI application we can manage, after
LDAP user validation, the Alarm/Warning levels of every
analog signal, interlock status (active/latched/was_first)
for analog and digital inputs, forced and disable states
both for interlocks and digital outputs, and the status of
the PowerLink word; synchronized in all the EPS cpu's to
share interlock signals between them.

Figure 4: The EPS expert GUI.

The information regarding the several subsystems
managed by the EPS (vacuum, magnets, RF, bpm's,
front-ends) is later summarized in 2 user-level
applications: the ALBA-EPS (that allows fast diagnose
and acknowledge of interlocks in the accelerators side)
and the Machine Protection System (with specific
diagnostic tools in case of BPM or RF interlocks).

Tango, Sardana and PANIC

Many analog and digital signals in ALBA beamlines
have been exported to our Tango-based experiment
control framework, Sardana. The Sardana suite allows to
add Tango controlled hardware as experimental channels,

using them as I/O or experimental data (e.g. temperatures
and vacuum pressures). In addition, limited motion
control have been implemented using PyPLC and
dedicated structures in the EPS_LIBRARY, which
allowed direct control from Sardana macros or scans
developed by scientists.

A similar approach to higher-level procedures involving
several Tango devices are implemented using automated
actions from PANIC Alarm System[7]. Those macros
allow both scientists and PLC engineers to program
automated actions on elements controlled by the EPS
(valves, shutters) during experiments. These actions do
not bypass the EPS, as it is always kept as an autonomous
system ensuring the safe state of the installation, but allow
the recovery of the system once all the permits conditions
are matched.

Figure 5: The VACCA User Interface.

Taurus, VACCA and the EPS User GUI

All those high-level features were enabled by the
Dynamic Attributes syntax, that allowed specific
interfaces to express intermediate states like warning,
external interlocks, complex error codes, attributes
managed by multiple registers (e.g. multiple-stage
pneumatic elements), etc. Those attributes use Tango
Qualities to complement the raw attribute values, passing
the information regarding Alarm/Warning/Moving limits
and positions with each value sent to clients.

Qualities and state machines become visible in Taurus
applications, being converted into colors easy to catch on
either control panels or synoptic applications like VACCA
[17]. All attributes exported to Tango from the PLC
become available to all Taurus widgets (device panels,
forms, trends) and can be displayed in tabbed panes as
separated elements or in combination with those
equipments to be controlled. Those same attributes also
allow the user to customize how this information is
displayed, either modifying the attribute label or its units
and formatting.

This transparent interaction between the Tango and EPS
control systems is pushing the need of an standard User-
level GUI for the EPS, providing the same information
than the Expert GUI but in a way that makes easier to
locate and diagnose the causes of an interlock (and the
best way to recover). This diagnose feature is being

Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF140

Personnel Safety and Machine Protection

ISBN 978-3-95450-148-9

415 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

implemented as a PLC source navigator integrated within
our current Vacuum Control Application (VACCA), which
has been already extended to manage both Archiving and
Alarms services.

CONCLUSION

After 8 years of design, installation, commissioning and
operation the EPS has become a mature control system by
itself, achieving a high level of consistency and reliability.

Its integration within Tango using PyPLC allowed to
integrate the PLC systems in all our Tango services. Not
only in “passive” ones like Archiving or Alarms, but also
as an active part in our experiment-control framework,
Sardana.

The next step is the integration of the current tools in an
automated cycle of continuous development and delivery.
First steps in this direction have been achieved
introducing all the PLC's code in SVN repositories, and
later migrating to python all the auto-generation tools.

Now, after several years of operation, the two new
beamlines under construction at Alba are bringing an
opportunity to put all the recent improvements and
develop a clean an optimized solution for them. Learning
from the previous experience and aiming to refine the
new procedures to be later reapplied to the old beamlines.

The current level of integration between Tango and
EPS on older beamlines is still much lower than in the
accelerators side. This is due to the bigger number of
special cases and exceptions while integrating specific
devices in the CCDB catalog or the EPS_LIBRARY. It is
expected that the new tools as the Auto-generation and the
Source navigator will help the PLC engineers to simplify
the logics and naming of the existing systems, but there
will be always a big percentage of beamline variables too
specific to be standardized.

For those cases, enabling all EPS variables as Tango
attributes will allow the users to setup and use their own
Labels, while keeping the cabling-based tags as attribute
names. This kind of mixed naming schema (attribute for
control engineers, label for scientists) should reduce the
number of naming conventions exceptions and provide
enough consistency to close the auto-generation loop.

ACKNOWLEDGEMENT

Many former ALBA engineers have collaborated in the
PLC-related projects in the last 6 years: A.Rubio, R.Ranz,
R.Montaño, R.Suñé, M.Niegowski, M.Broseta and
J.Villanueva.

The collaboration of Tango core developer, Emmanuel
Taurel and former ALBA developer R.Suñé was
fundamental in the development of Dynamic Attributes
templates and debugging of PyPLC performance.

The work of the Generic Software Group at ALBA in
the development of Taurus and the Taurus GUI
framework has made possible the evolution of the EPS
Graphical User Applications.

Last but not least, none of the elements in the auto-
generation cycle would have work without the Cabling
and Controls Database, developed by the Management
and Information Systems section of ALBA.

REFERENCES

[1] ALBA website: http://www.cells.es
[2] TANGO website: http://www.tango-controls.org
[3] A.Götz, E.Taurel et al., “TANGO V8 – Another

Turbo Charged Major Release”, ICALEPCS'13, San
Francisco, USA (2013).

 [4] C. Pascual-Izarra et al., “Effortless Creation of
Control & Data Acquisition Graphical User
Interfaces with Taurus”, ICALEPCS'15, Melbourne,
Australia (2015).

[5] T.Coutinho et al., "Sardana, The Software for
Building SCADAS in Scientific Environments",
ICALEPCS'11. Grenoble, France (2011).

[6] Z. Reszela et al., “Sardana – A Python Based
Software Package for Building Scientific Scada
Applications”, PcaPAC'14, Karlsruhe (2014).

[7] S.Rubio et al., “PANIC, a Suite for Visualization,
Logging and Notification of Incidents”, PcaPAC '14,
Karlsruhe, Germany (2014).

[8] R.Ranz et al, “ALBA, The PLC based Protection
Systems.”, ICALEPCS'09. Kobe, Japan (2009).

[9] D.Fernández-Carreiras et al, “Personnel protection,
equipment protection and fast interlock systems”,
ICALEPCS'11, Grenoble, France (2011).

[10] D. Beltran, et al. “ALBA Control And Cabling
Database”, ICALEPCS'09, Kobe, Japan (2009).

[11] S. Rubio-Manrique et al. "A Bottom-up Approach to
Automatically Configured Tango Control Systems",
ICALEPCS'11, Grenoble, France. (2011).

[12] S. Rubio-Manrique et al., "PyPLC, A Versatile PLC-
to-PC python interface", PCaPAC'14, Karlsruhe,
Germany (2014).

[13] D.Fernández et al. “Alba, a Tango based Control
System in Python”, ICALEPCS'09, Kobe, Japan
(2009).

[14] S.Rubio et al., “Dynamic Attributes and other
functional flexibilities of PyTango”, ICALEPCS'09,
Kobe, Japan (2009)

[15] S.Rubio, et al. “Extending Alarm Handling in
Tango”, ICALEPCS'11, Grenoble, France (2011).

[16] MIRAS website: http://www.miras2.es/
[17] S. Rubio-Manrique et al., “Unifying All TANGO

Control Services in a Customizable Graphical User
Interface”, WEPGF148, ICALEPCS2015, these
proceedings.

MOPGF140 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

416C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Personnel Safety and Machine Protection

