
LABVIEW AS A NEW SUPERVISION SOLUTION FOR INDUSTRIAL
CONTROL SYSTEMS

O.O Andreassen, F. Augrandjean, E. Blanco Vinuela, D. Abalo Miron, M. F. Gomez De La Cruz,
A. Rijllart, CERN, Geneva, Switzerland

Abstract
To shorten the development time of industrial control

applications, CERN has developed the Unified Industrial
Control System (UNICOS) framework, which
standardizes the programming of the front-ends and the
configuration of the Supervisory Control and Data
Acquisition (SCADA) layer. At CERN the SCADA
system of choice is WinCC OA, but for some specific
projects (small or initial prototypes not connected to
accelerator operation or not located at CERN) a more
customisable supervision using LabVIEW is an attractive
alternative. Therefore, a system called UNICOS in
LabVIEW (UiL), has been implemented. It provides a set
of highly customisable re-usable components, devices and
utilities. Because LabVIEW uses different programming
methods than WinCC OA, the tools for automatic
instantiation of devices on the supervision layer had to be
re-developed, but the configuration files of the devices
can be reused. This paper reports how the implementation
was done, it describes the first project implemented in
UiL and an outlook to other possible applications.

 INTRODUCTION
The CERN Unified Industrial Control System

(UNICOS) project proposes a standardized architecture
for both, supervision and control layers. It also defines a
set of tools for automatic instantiation of devices, in the
two mentioned layers, employing re-usable components,
devices and utilities.

However, for smaller lab-size solutions e.g. systems
which are only expected to exist for a short time or when
users do not have the time and resources to invest in a
complete SCADA as WinCC Open Architecture (WinCC
OA), a LabVIEW based solution would fill this gap
[1][2].

UNICOS in LabVIEW (UiL) gives the user much of
the same look & feel and functionality of WinCC OA as
Human Machine Interface (HMI).

UiL generates automatically the supervision objects
from the same configuration file provided by UNICOS
Application Builder (UAB), which was developed to
generate the code and configuration files of the different
components of the UNICOS project (e.g. WinCC OA,
Siemens PLCs etc.) [3][4]. These objects are the
counterpart instances of the control objects deployed in
the PLCs in the control layer.

Once the objects are instantiated in the UiL application,
they can be used in the application synoptic by means of
widgets, a reduced but still meaningful vision of its status,
and faceplates, a full view of the object status and the

place where the operator will interact with the control
system.

In addition to the widgets and faceplates, UiL provides
a trending tool, an alarm and an event list. All the
components, widgets and user interaction in UiL are
designed to resemble the UNICOS look and feel as much
as possible; making sure that the transition from one
SCADA tool to the other is effortless.

UNICOS
UNICOS was initially developed in 1998 as a need to

develop the LHC cryogenics control system, but became a
CERN de facto standard for industrial control systems. As
shown in the figure 1, the framework connects,
instantiates and interacts with both the supervision and
control layers with commercial industrial components
[1][5].

Figure 1: UNICOS architecture.

Currently UNICOS uses WinCC OA as a commercial

SCADA system and both Siemens, Schneider, as
Programmable Logic Controllers (PLC) [1][6]. A third
possibility using Codesys extends the usage to industrial
computers (IPC)

The possibilities and the application of the UNICOS
framework extend to monitoring and supervision
applications (e.g. Magnets alignment, Collimators,
Quench protection systems...) where the control layer
could be not based on UNICOS.

The UNICOS framework is based on an object oriented
concept consisting of standard object classes featuring
process control objects, controllers, valves, pumps,
heaters, inputs, outputs etc. It also establishes how these
objects interact and formalizes the control unit definition
together with the way the specific control logic is
implemented.

Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF115

Integrating Complex or Diverse Systems

ISBN 978-3-95450-148-9

349 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

UNICOS IN LABVIEW
Although deploying a UNICOS/WinCC OA SCADA

solution is easier than starting from scratch with WinCC
OA, for some applications this solution can still be too
difficult, and/or too costly in terms of needed expertise
knowledge. In some cases, the developers lack the time,
knowledge, manpower and/or resources to invest in a
complete SCADA as WinCC OA. Many times the
developers are already familiar with LabVIEW as well.
These are the basic justifications for the UNICOS in
LabVIEW (UiL) project [1][7].

The objective of the UiL project is to offer a simple and
affordable solution including most of the core
functionality and tools found in UNICOS. The
combination of a simplified UNICOS functionality and
LabVIEW’s graphical programming interface, makes it
more suited for lab-size and prototype applications with a
substantial reduction on engineering costs (Figure 2). In
addition, the site-licensing scheme adopted at CERN for
LabVIEW reduces the cost of ownership for smaller
SCADA systems.

Figure 2: UiL example application

Architecture and Components
UiL is implemented using several commercial off-the-

shelf components as LabVIEW, LabVIEW Datalogging
and Supervisory Control Module (DSC) and a third party
Python bindings application interface to MongoDB, an
open-source document database designed to ease the
development and scaling [8].

The general module architecture can be seen in Figure
3. The application revolves around a client, which
subscribes, caches and re-serves data throughout the
application using LabVIEW’s internal notifiers and
queues. The most resent updates are stored and
broadcasted through an internal notifier, which can be
read (by reference) in any sub module of the application.
The larger data sets (arrays and vectors for trends and
graphs) are stored in an internal queue, and indexed by
object type identifiers.

Figure 3: UiL modules.

Communication
The communication between UiL and the UNICOS

based PLC’s is based on OPC UA. OPC UA is a
platform-independent, service-oriented architecture
specification that allows the exchange of data in the
industrial automation space [9]. The UNICOS based
PLCs targeted are Siemens and Schneider. S7 and
Modbus over Ethernet are used by those PLCs
respectively. Moreover, they implement a CERN in-house
protocol, the so-called Time Stamp Push Protocol (TSPP).
This protocol is an event-based protocol; data is
transmitted towards the supervision layer once it changes
and it is sent together with the source time stamp [10].

A dedicated OPC UA server, encapsulating the TSPP
protocol, has been developed at CERN. Having such
server, any OPC UA client can connect to it and get the
PLC data out, as it is the case of UiL, which includes an
OPC UA client. This solution is very convenient as it
simplifies the communication having only a single
mechanism independent of the PLC (Figure 4).

Figure 4: UiL communication.

Data Flow
Data in UiL is primarily stored and accessed through

the use of internal LabVIEW notifiers. For trends, the
data is queued, in order to accurately display all data from
the PLC without losing data points in the graph. The

MOPGF115 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

350C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Integrating Complex or Diverse Systems

trends and events also access the NoSQL database for the
viewing of historical data (Figure 4).

Archiving
UiL has the capability to archive all live data and

settings. When the user selects this option in the UNICOS
specification file for a particular device, the data is
automatically cached and stored. UiL archives its data in
MongoDB, a cross-platform document-oriented database.
Classified as a NoSQL database. MongoDB eschews the
traditional table-based relational database structure in
favour of JSON-like documents with dynamic schemas,
making the integration of data in applications such as UiL
easier and faster [1][4]. The method used to archive data
is class based and intended to support multiple sinks
through class overrides in the future. This would make
data retrieval possible directly from a WinCC OA
archive, hence facilitating integration in between these to
supervisors.

WORKFLOW AND DEVELOPMENT
The starting point for UiL configuration is the UAB

generated configuration file [3][4]. This file contains the
front-end, typically a PLC, parameters and the devices to
instantiate. The user navigates to the file, selects a project
name and location where to save the project (Figure 5).
The IP address or hostname of the PLC is retrieved from
the configuration file when the program runs after
creation. The user can also manually set this if one wishes
to connect to a simulated device.

Figure 5: UiL Project generator.

Building the synoptic for a UiL application is drag and
drop based. In the LabVIEW Project window, the
‘Widgets’ folder contains all object types as well as other
graphical indicators and decorations. During the
generation of the widgets, all items have been given a
type identifier, which is used internally by the UiL’s
scripting engine. This facilitates all animations and user
interactions with the widget.

Figure 6: LabVIEW UiL project window.

To place specific devices into a synoptic, the user drag-
and-drops a widget (Figure 6) onto the Front Panel which
triggers a window where the user can select the object the
widget must be linked to, choose an icon representation,
and what device reference to connect to. Once configured,
the widget is animated on the applications front panel.

VALIDATION
The UiL development has been initially tested in terms

of connectivity with two OPC UA servers, interfacing
with one PLC and one virtual device and up to three
hundred channels. The test machine was a standard HP
Compaq 8000 elite with 4Gb of RAM running Windows
7 64bit. The UiL LabVIEW instance was running in 32bit
mode. The test bench had 200 active channels to the two
servers and all the data was logged to its MongoDB
archive. No significant increase in CPU (was at 30%
when starting and stayed at 35% after the application ran)
or Memory (used 200MB at start and had 350 Mb after
48H run) was noticed while running the test. The test
provoked a random alarm every 30 minutes on random
channels, and stored all the data while running. The
update frequency was set to 1 point every half second,
fixed.

The results in terms of animation were also very
satisfactory having several dozens of devices in the same
synoptic refreshing continuously. Interaction with the
devices (via dedicated buttons) in the faceplates
associated to the widgets was also smooth and efficient.

The current OPC UA implementation only
communicates with one PLC, and some of the status
indicators and alarms rely on live data from the OPC-UA
server. This can cause confusion in case of
communication loss by not having a proper diagnostic in
the proposed architecture.

Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF115

Integrating Complex or Diverse Systems

ISBN 978-3-95450-148-9

351 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

The current UiL release only supports a single database
archive per application instance. This limits the cross
application interaction although this will be addressed in
next releases.

FUTURE PLANS
A consolidation phase is the first step to make the UiL

a solid and deployable solution. Up to now all the
concepts have been validated during the development and
test phases. The plans include the development of a full
palette of widgets and faceplates for the different sensors,
actuators and control devices. The alarm and event
managers will incorporate filtering capabilities and the
diagnostics of the front-ends will be properly interpreted
and shown to the user.

Support of multiple connections to PLCs will be added,
but we still have to decide if this will be done at the OPC-
UA server level or with the UiL client connecting to
multiple servers.

Cross communication between different instances of
UiL backends will be implemented in the next release.

CERN services will be included in future releases,
these comprise the interface with LASER, the CERN
central alarm system, the DB Logging, the CERN long
term database and the CERN middleware (CMW) to
exchange data from the UiL to a third party applications.

With the current class based data subscription model
and in combination with the RADE framework, this could
be done without much effort [7][11].

CONCLUSION
UiL has been successfully developed and is being used

for prototypes at CERN. The combination of LabVIEW’s
intuitive drag and drop-based interaction, together with
the similar look and feel of WinCC OA makes UiL a
good choice for small to medium sized UNICOS
applications as a cost effective supervisor. UNICOS is a
widely used and supported standard for industrial control
systems at CERN. Using UNICOS instead of a custom
solution will benefit CERN users, as it will speed up
development time and their support is ensured

UiL has most of the core UNICOS features, such as the
generator, widgets, faceplates, contextual buttons, the
alarm and event list, the trend tool and panel navigation
tools.

OPC UA has been chosen as the communication layer
between LabVIEW and the PLCs. Our tests show that
both the Siemens and Schneider PLCs communicate well
using the OPC UA interface and scales well with UiL
[2][5]. This is accomplished without needing to do any
changes to the UiL OPC UA client.

Our performance tests show that UiL can handle
several hundred widgets running simultaneously without
any significant load to the CPU.

REFERENCES
[1] P. Gayet et al. “UNICOS a framework to build

industry like control systems”, ICALEPCS 2005,
Geneva, Switzerland, (2005)

[2] Siemens “SIMATIC WinCC”, (1996),
https://en.wikipedia.org/wiki/WinCC

[3] I. Prieto Barreiro et al. “UAB CONTINUOUS
INTEGRATION FOR AUTOMATED CODE
GENERATION TOOLS”, ICALEPCS 2013, San
Francisco, USA, (2013)

[4] I. Prieto Barreiro “UAB Bootstrap”, CERN 2012,
Geneva, Switzerland, (2012)

[5] R.Barillère et al. “A HOMOGENEOUS APPROACH
FOR THE CONTROL OF THE LHC
EXPERIMENTS GAS SYSTEMS”, ICALEPCS
2003, Gyeongju, Korea, (2003)

[6] B. Farnham et al. “Migration from OPC-DA to OPC-
UA”, ICALEPCS 2011, Grenoble, France, (2011)

[7] O. Ø. Andreassen et al. “The LabVIEW RADE
framework distributed architecture”, ICALEPCS
2011, Grenoble, France, (2011)

[8] K. Banker “MONGODB IN ACTION”, p. 375, ISBN
9781935182870, (2011)

[9] W. Mahnke “OPC UNIFIED ARCHITECHTURE”
OPC UA, (2009),
https://library.e.abb.com/public/75d70c47268d78bfc
125762d00481f78/56-61 3M903_ENG72dpi.pdf

[10] J. Ortolá Vidal et al. “AN EVENT DRIVEN
COMMUNICATION PROTOCOL FOR PROCESS
CONTROL: PRFORMANCE EVALUATION AND
REDUNDANT CAPABILITIES”, ICALEPCS 2013,
San Francisco, USA, (2013)

[11] A. Dworak et al. “THE NEW CERN CONTROLS
MIDDLEWARE”, CHEP 2012, New York, USA,
(2012)

MOPGF115 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

352C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Integrating Complex or Diverse Systems

