
DEVICE CONTROL DATABASE TOOL (DCDB)

Pavel Maslov, Matej Komel, Miroslav Pavleski, Klemen Zagar, Cosylab, Ljubljana, Slovenia

Abstract
We have developed a control system configuration tool,

which provides an easy-to-use interface for quick
configuration of the entire facility. It uses Microsoft Excel
as the front-end application and allows the user to quickly
generate and deploy IOC configuration (EPICS start-up
scripts, alarms and archive configuration) onto IOCs;
start, stop and restart IOCs, alarm servers and archive
engines, and more. The DCDB tool utilizes a relational
database, which stores information about all the elements
of the accelerator. The communication between the client,
database and IOCs is realized by a REST server written in
Python. The key feature of the DCDB tool is that the user
does not need to recompile the source code. It is achieved
by using a dynamic library loader [1], which
automatically loads and links device support libraries. The
DCDB tool is compliant with CODAC (used at ITER and
ELI-NP), but can also be used in any other EPICS
environment (e.g. it has been customized to work at ESS).

INTRODUCTION
In a physics facility containing numerous instruments,

it is advantageous to reduce the effort and repetitiveness
needed for changing the control system (CS)
configuration: adding new devices, moving instruments
from beamline to beamline, etc. We have developed the
Device Control Database (DCDB) tool [2], which
provides an easy-to-use interface for quick configuration
of the control system for the entire facility. The DCDB-
tool allows the user to quickly generate and deploy
configuration for input/output controllers (IOCs) (EPICS
start-up scripts, alarms and archive configuration) onto
IOCs; start, stop and restart IOCs, alarm servers and
archive engines, and more.

Figure 1: DCDB architecture.

DCDB ARCHITECTURE
The DCDB-tool uses a MySQL relational database. The

backend is a typical web-server (Fig. 1), which is realized
with a combination of the following Python modules:
flask-restful (REST server), sqlalchemy and pymysql
(database communication layer), and paramiko (ssh). The
front-end is a Microsoft Excel plugin written in C# using
.NET technology. IOCs are Linux machines running
EPICS and procServ [3]. The client-server
communication is based on the exchange of JSON objects
(strings).

DEVICE SUPPORT MODULES
To start using the DCDB-tool, simply prepare EPICS

device support modules and register them with the DCDB
server. In general, device support modules are created in
the standard EPICS way. The DCDB-tool introduces the
idea of using dynamic macros in the startup scripts. Three
additional files, namely: init.cmd, init-pre.cmd and init-
post.cmd (Fig. 2) contain macro definitions to be stored in
MySQL, and IOC shell commands that register and setup
the support module before and after IOC initialization.

Figure 2: Files to deploy.

The procedure of creating device support modules for
ITER using special extensions to the mvn iter plugin was
described in [4]. In the latest version we have tailored
DCDB to work in the new EPICS environment developed
at ESS [5], since they have a similar approach to using
dynamic library loading, and in addition to our setup
support dependency resolution and have a simpler unit
development workflow. The latter is achieved by creating
a Makefile, adding source files and running make. If you
want to locally install the module, run the shell command:
sudo make install. In order to register the module with
the DCDB tool, run make dcdb.import. To delete the
module from DCDB, run make dcdb.delete.

The last two commands require two environmental
variables $(DCDB_SERVER) and $(DCDB_PORT) to
correspond with the parameters of a running DCDB
server.

MOPGF105 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

326C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Integrating Complex or Diverse Systems

PLC SUPPORT
While doing EPICS integration of Siemens S7 PLCs,

the developer spends a lot of time grouping PVs and
calculating offsets in order to match EPICS PV types with
STEP7 variable types. We have decided to simplify and

automate this process using Excel and introduce this
feature into the DCDB-tool. There are now sheets in the
Excel file where you configure the hardware, generate
UDTs and assemble DB blocks. As a result, the DCDB-
tool generates an EPICS start-up script and two PLC
configuration files to be deployed on the PLC.

Figure 3: Microsoft Excel client. Configuration of support modules instances.

Figure 4: Microsoft Excel client. PLC blocks configuration.

Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF105

Integrating Complex or Diverse Systems

ISBN 978-3-95450-148-9

327 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

FRONT-END
The user communicates with the REST server via an

HMI, which is realized as an Excel add-in (ribbon). It
provides a set of buttons with which you can easily edit
your support modules’ configuration (Fig. 3), configure
IOCs (Fig. 5), PLCs (Fig. 4); start/stop/restart IOCs, and
more.

As a free alternative to Microsoft Excel, the DCDB-
tool also has a Google Spreadsheets client (Fig. 5), which
has been published to the Chrome webstore (Fig. 6). The
client is written in HTML/Javascript and fully supports
the functionality provided by the JSON API.

Figure 5: Google Spreadsheets client. IOC configuration sheet.

Figure 6: Google Spreadsheets client in the Chrome webstore.

MOPGF105 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

328C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Integrating Complex or Diverse Systems

SUMMARY
The DCDB-tool is a powerful control system

configuration tool that reduces integration effort and thus,
time. It was tested on different platforms including
RHEL, Ubuntu, Scientific Linux, Mac OS X and
Windows. It is developed with the best practices from the
EPICS community, compliant with the CODAC Core
System (used at ITER, ELI-NP), but can also be used in
any other EPICS environment (i.e. ESS).

ACKNOWLEDGEMENT
This project has received funding from the European

Union’s Seventh Framework Programme for research,
technological development and demonstration under grant
agreement no 289485.

REFERENCES
[1] The concept of dynamically loadable device support

modules, including the require function is developed
by Dirk Zimoch (PSI).

[2] DCDB-tool official web-page:
http://users.cosylab.com/~pmaslov/dcdb/

[3] procServ (written by Ralph Lange):
http://sourceforge.net/projects/procserv/

[4] DCDB tool, PCaPAC 2014:
http://accelconf.web.cern.ch/AccelConf/PCaPAC201
4/papers/fpo015.pdf

[5] ESS EPICS Environment: https://ess-
ics.atlassian.net/wiki/display/HAR/EPICS+Environm
ent

Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF105

Integrating Complex or Diverse Systems

ISBN 978-3-95450-148-9

329 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

