
REPORT ON CONTROL/DAQ SOFTWARE DESIGN AND CURRENT

STATE OF IMPLEMENTATION FOR THE PERCIVAL DETECTOR

A.S. Palaha, C. Angelsen, Q. Gu, J. Marchal, N. Rees, U.K. Pedersen, N. Tartoni, H. Yousef, Diamond

Light Source, Harwell Science and Innovation Campus, Oxfordshire, UK

M. Bayer, J. Correa, P. Gnadt, P. Gottlicher, H. Graafsma, S. Lange, A. Marras, S. Reza ∗,

I. Shevyakov, S. Smoljanin, J. Supra, M. Tennert, U. Trunk, C.B. Wunderer, Q. Xia, M. Zimmer,

Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany

D. Das, N. Guerrini, B. Marsh, T. Nicholls, I. Sedgwick, R. Turchetta, Rutherford Appleton Laboratory

(RAL), Harwell Science and Innovation Campus, Oxfordshire, UK

G. Cautero, D. Giuressi, A. Khromova, R. Menk, G. Pinaroli, L. Stebel,

Elettra Sincrotrone Trieste, Italy

H.J. Hyun, K.S. Kim, S. Rah, Pohang Accelerator Laboratory, Pohang, Korea

Abstract

The Percival Collaboration is developing a high-speed,

low X-ray energy detector capable of detecting single pho-

tons while maintaining a large dynamic range of sensitivity.

The increased brilliance of state-of-the-art Synchrotron

radiation sources and Free Electron Lasers require imaging

detectors capable of taking advantage of these light source

facilities. The PERCIVAL ("Pixelated Energy Resolving

CMOS Imager, Versatile and Large") detector is being de-

veloped in collaboration between DESY, Elettra Sincrotrone

Trieste, Diamond Light Source and Pohang Accelerator Lab-

oratory.

It is a CMOS detector targeting soft X-rays < 1 KeV, with

a high resolution of up to 13 M pixels reading out at 120 Hz,

producing a challenging data rate of 6 GiB/s.

The controls and data acquisition system will include a

Software Development Kit to allow integration with third

party control systems like Tango and DOOCS; an EPICS [1]

areaDetector [2] driver will be included by default. It will

make use of parallel readout to keep pace with the data

rate, distributing the data over multiple nodes to create a

single virtual dataset using the HDF5 file format for its speed

advantages in high volumes of regular data.

This development project will culminate in a control and

DAQ system capable of dealing with very high data rates

while providing easy integration with site-specific control

systems.

This report presents the design of the control system soft-

ware for the Percival detector, an update of the current state

of the implementation carried out by Diamond Light Source.

INTRODUCTION

The PERCIVAL detector is designed for high-speed and

low noise detection of soft X-rays. The Percival CMOS chip

is a large pixel array of ~13 mega-pixels with 15 bits per pixel

(packed in 16 bit words) which encodes a substantially higher

dynamic range of the sensor as described below [3]. This

leads to 25 MiB per frame. For each data frame the detector

∗ Mittuniversitetet, Sundsvall, Sweden

will also produce a reset frame of the same dimension, so

the total data produced is 50 MiB per frame. There will also

be a ~2 mega-pixels version [4]. For the designed frame-rate

of 120 Hz this leads to an overall data rate of ~6 GiB/s [5].

The Detector

The detector pixel is an adaptive gain design [4], allowing

single photon discrimination at low flux while still being

capable of high flux measurements at the cost of increased

noise. It comprises a diode and three capacitors, each of in-

creasing capacitance, to collect charge depending on whether

the next smallest capacitance component has been filled; thus

“adaptive-gain”. As there are four “collectors” per pixel,

there are four possible gain values also. A pixel array feeds

scrambled data to a pair of “mezzanine” cards, each with

an FPGA to perform a certain amount of low level unscram-

bling and formatting the data into UDP packets for transfer

to the processing nodes. These nodes are a Linux cluster of 8

commodity servers, as recommended by an earlier feasibility

study [3] in order to handle the processing of the expected

data rate.

CONTROL SYSTEM ARCHITECTURE

Shown in Fig. 1 is an overview of the proposed Perci-

val software architecture, where the green single direction

arrows represent the flow of data and purple bidirectional

arrows represent control links. The top half represents the

data acquisition system, with the sensor board having its

data collected by the carriers boards via LVDS lines and

transferred to the mezzanine boards before it is sent through

the deep buffer switch and onto the Linux cluster.

Each FPGA of the mezzanine board has four 10 GBps

links to the deep buffer switch, one for control and three for

transmitting data. Since there is a chance of UDP packet

loss, and the goal for maximum packet loss is less than 1 in

106, a lightweight retry protocol will be used to ensure this

aim.

The Linux cluster software stack and user workstation

software suite comprise the control software that is being

Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF070

Experimental Control

ISBN 978-3-95450-148-9

251 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Figure 1: Percival Software Architecture: purple arrows represent control links, green arrows represent data links.

developed at DLS. The Linux cluster will run a chain of

software for grabbing the data off the switch through 10

GBps Ethernet links for viewing and writing the processed

data to file. The user workstation software will provide slow

control of the detector and data acquisition, made of a core

C/C++ library, with a Software Development Kit (SDK) to

provide a means to interface with control systems.

Software Development Kit

The SDK will allow interfacing with controls systems

such as EPICS, TANGO, DOOCS and others. A Graphical

User Interface (GUI) can be applied with it to the control

interface. The control software will come with EPICS and

areaDetector support built in.

LINUX CLUSTER SOFTWARE

The Linux Cluster Software encompasses all the software

involved in the live processing of the detector data. Live

processing is necessary as it is required to be able to run the

detector continuously, that is not only in burst or buffering

mode, but also to take data almost indefinitely. The architec-

ture is of a parallel processing pipeline with each piece of the

software processing the data in turn. Each complete frame

of detector data will be sent to a separate node in sequential

order.

Frame Receiver

The Frame Receiver enables reception of frames of detec-

tor data transmitted over a network connection as a stream.

It constructs data frames in shared memory buffers and com-

municates with external applications to allow processing

and storage. It collects the data from the deep buffer switch

into the cluster of Linux nodes, placing them in memory

buffers to be accessed by the next step in the chain.

Live Processing

The live processing of the detector data into use-able

images is implemented in a highly optimised C++ library.

The detector data at this stage has the format of a 16-

bit integer per pixel. This is split into three parts; 2 bits

for the gain multiplier, 8 bits for the fine Analogue Digital

Converter (ADC) code and 5 bits for the coarse ADC code,

with 1 bit left unused. The fine and coarse Analogue Digital

Unit (ADU) codes represent the analogue voltage from each

pixel as converted by the detector ADCs.

MOPGF070 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

252C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experimental Control



The first processing step is to decode the integer coarse,

fine and gain codes from the packed 16-bit integer. The

coarse and fine codes are converted to a floating point num-

ber representing the intensity measured by each pixel. This

is called the ADU calibration, and requires a static array of

offset and gain values for each of the seven coarse and fine

ADCs.

Multiplying the ADU calibrated float by the pixel gain is

the next step, the gain is one of four values encoded by the

two gain bits of the now unpacked 16-bit integer. The gain

values depend on which of the capacitors or the diode is read

out from the pixel to the ADC, and depends on which pixel

is read out (as the capacitances of the pixel components are

not completely uniform over all the pixels).

Next, if the gain corresponds to the photo-diode of the

pixel, i.e. the highest gain value, then the reset frame that

has also undergone the previous processing steps must be

subtracted from the sample frame. This is called the Cor-

related Double Sampling (CDS) subtraction step, reducing

systematic errors in the signal.

Finally, dark image subtraction is performed by removing

a constant frame from the result.

The coarse and fine offsets and gains, as well as the pixel

gains and the dark frame are all intrinsic to the detector,

acquired before measurements are taken and stored in static

arrays available in memory for the processing steps to use.

In developing and optimising this library [6], the primary

goal is achieving the fastest processing time, indicated by

the bandwidth, i.e. the amount of data processed per unit

time for both the sample and reset frames. Profiling tools

were used to identify the most significant contributions to

processing time and potential bottlenecks, and the library

was developed as a processing chain so as to swap in and out

different versions of the processing steps within the profiling

and optimisation framework. Much of the tuning applied

here is specific to the hardware and micro-architecture of

the system.

• The first step taken to optimise the library was reducing

the computation time in the first processing step by

changing the floating point division to a multiplication

of the denominator’s inverse.

• The GCC compiler offers three levels of optimisation,

and various techniques offered by the C++ language

were employed.

• Parallelisation is employed using Intel Threading Build-

ing Blocks (TBB) in order to spread the processing of

one node over multiple threads. It was found that the

optimal number of logical threads was to use the num-

ber of physical threads, although some subtleties were

encountered.

• Vectorising the operations such that calculations are

performed on multiple pixels at the same offers further

improvement in processing bandwidth, using the AVX

(Advanced Vector eXtensions) instruction set that is

enabled on Intel Ivybridge and Sandybridge architec-

tures.

• Alignment of the data with the available vector sizes

also improved throughput, requiring that the multiples

of 7 pixels (due to the detector chip having 7 ADCs each

with which to read out rows of pixel data) be padded

with an empty slot.

Figure 2: Optimisation steps versus processing bandwidth,

with comparisons to the baseline [6].

The results of the various optimisation steps and the im-

pacts on bandwidth are shown in Fig. 2. Improvements were

optimal when parallelisation, compiler optimisation, replace-

ment with bitwise operations and the AVX with a particular

template better suited to large bandwidths is used.

Figure 3 shows the linear dependence of processing band-

width with up to roughly 10 threads, after which there ap-

pears to be a saturation at ~2.5 GiB/s. The result shown

is using a grain size, or chunk of data to process from the

cache at one time, to be a factor of the number of pixels in

the frame. The grain size is optimised to be a multiple of 7

(to match the number of ADCs, and the number of pixels

rows is a multiple of 7), and is optimised to fill as much of

the memory cache of the server node without saturating it.

A grain size of 3528 was used for the result measured in

Fig. 3.

Figure 3: Processing bandwidth versus the number of

threads [6].

Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF070

Experimental Control

ISBN 978-3-95450-148-9

253 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Overall, the optimised library is found to run stably on a

single node at (2.5 ± 10%) GiB/s, which is 59× the baseline

bandwidth, and more than 3× the required bandwidth to

achieve the required data processing bandwidth.

Compression

Compression of data before writing to file has been in-

vestigated, with optimised parallel compression of interest

in particular, to exploit the Linux cluster multi-core archi-

tecture. The “blosc” compressor tool [7] was used as it

specialises in fast compression and decompression, use of

multi-threading capabilities, and it can be applied to HDF5

data when writing to or reading from a disk. Initial and

very basic measurement has yielded encouraging results but

require further tests and development.

Live Viewer Stream

The live viewer requirement is only a reduced data-rate,

sacrificing combinations of frame-rate, resolution and/or

region-of-interest. Components for streaming the live data

after processing on the Linux cluster already exist so will

be incorporated into the Linux cluster software. This is also

true for the live viewer; making use of an in-house developed

version of an areaDetector plug-in that utilises the ffmpeg

libraries to stream live data.

File Writing

File Writing is performed by an in-house developed file

writer based on the HDF5 format. The HDF5 group is imple-

menting support 1 for Single Write Multiple Read (SWMR)

to the HDF5 libraries, allowing for live viewing of the data

while the detector is capturing, processing and writing im-

ages [8]. This is an essential feature for long measurements,

to inspect the data early throughout the data acquisition.

Also implemented is direct chunk writing 2. This direct

chunk write feature is also key in allowing us to do high-

performance (i.e. outside of the HDF5 library) compression

with something like blosc.

As each node of the Linux cluster will receive one com-

plete frame in turn, and it has been found that parallel writing

to one file is not as efficient as writing to multiple files. This

will be addressed by adding Virtual DataSet (VDS) sup-

port to the HDF5 library. DLS, DESY and the Percival

collaboration have jointly contracted the HDF5 group for

this feature also. The HDF5 VDS will present data stored

in several HDF5 datasets and files as a single HDF5 dataset

and to access the data via HDF5 APIs without rewriting and

rearranging the data [9].

CONCLUSION

The controls and data acquisition software for the Percival

detector under development at DLS already has a design

for the system architecture, and has achieved a number of

significant milestones.

1 contracted by DLS and Dectris
2 funded by Dectris

The Frame Receiver software can successfully receive

data frames over a network switch, with a basic prototype

working with the current mezzanine firmware. Live control

and region-of-interest support is being developed.

Components developed at DLS for the live streaming and

live viewing of processed data are ready to be used within

the control framework for the Percival detector.

With the direct chunk write and SWMR feature, tests have

shown acceptable performance writing to a parallelised file

system.

A prototype of the scripting and CLI for detector control

has been tested operating with emulated hardware.

A library written in C containing the live processing al-

gorithms has been developed and extensively optimised to

not only meet but substantially exceed the bandwidth re-

quirements for processing data on each cluster node. Test-

ing has shown it is capable of processing at a rate of

(2.5 ± 10%) GiB/s on one of the Linux cluster nodes.

An interface for EPICS and areaDetector will be included

in the developed controls software, and will be allow use

with other control systems such as TANGO and DOOCS.

The SDK also allows for the implementation of a GUI with

the controls software.

REFERENCES

[1] Experimental Physics and Industrial Control System website:

http://www.aps.anl.gov/epics/

[2] areaDetector website: http://cars9.uchicago.edu/

software/epics/areaDetector.html, “areaDetector:

EPICS software for area detectors”, (22 September 2015).

[3] U.K. Pedersen et al., “Feasibility Study of PERCIVAL Data

Acquisition Backend Architecture”, IEEE NUCLEAR SCI-

ENCE SYMPOSIUM & MEDICAL IMAGING CONFER-

ENCE, (2014).

[4] C.B. Wunderer et al., “The PERCIVAL soft X-ray imager”,

16TH INTERNATIONAL WORKSHOP ON RADIATION

IMAGING DETECTORS, Trieste, Italy (2014).

[5] B. Marsh et al., “PERCIVAL: Design and Characterisation of

a CMOS Image Sensor for Direct Detection of Low-Energy

X-Rays”, PSD10: 10th International Conference on Position

Sensitive Detectors, University of Surrey, UK (2014).

[6] Q, Gu, “High Performance Detector Software for PERCIVAL

Detector”, Diamond Light Source Summer Internship Program

Report, Unpublished, (2015).

[7] Blosc website: http://www.blosc.org, “Blosc, an ex-

tremely fast, multi-threaded, meta-compressor library”, (22

September 2015).

[8] The HDF Group website, Single-Writer/Multiple-Reader

(SWMR) Documentation: https://www.hdfgroup.org/

HDF5/docNewFeatures/NewFeaturesSwmrDocs.html,

(22 September 2015).

[9] The HDF Group website, Virtual DataSet Documentation:

http://www.bigdata.org/HDF5/docNewFeatures/

NewFeaturesVirtualDatasetDocs.html, (22 September

2015).

MOPGF070 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

254C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experimental Control


