
MeerKAT CONTROL AND MONITORING SYSTEM ARCHITECTURE
Neilen Marais∗, SKA South Africa, Cape Town

Abstract
The 64-dish MeerKAT radio telescope, currently under

construction, comprises several loosely coupled independent
subsystems, requiring a higher level Control and Monitoring
(CAM) system to operate as a coherent instrument. Many
control-system architectures are bus-like, clients directly
receiving monitoring points from Input/Output Controllers;
instead a multi-layer architecture based on point-to-point
Karoo Array Telescope Control Protocol (KATCP) connec-
tions is used for MeerKAT. Clients (e.g. operators or sci-
entists) only communicate directly with the outer layer of
the telescope; only telescope interactions required for the
given role are exposed to the user. The layers, interconnec-
tions, and how this architecture is used to meet telescope
system requirements are described. Requirements include:
Independently controllable telescope subsets; dynamically
allocating telescope resources to individual users or obser-
vations, preventing the control of resources not allocated to
them; commensal observations sharing resources; automatic
detection of, and responses to, system-level alarm events;
high level operator controls and health displays; automatic
execution of scheduled observations.

INTRODUCTION
The MeerKAT Control and Monitoring (CAM) subsys-

tem is the high level control system that enables all the other
subsytems to operate cohesively as a single telescope. Most
of the CAM design principles were presented at ICALEPCS
2013 [1]. While much detail design and implementation
has been done since then, the only major architectural addi-
tion to CAM is the concept of telescope subarrays and the
subarray-manager components that implement them. An
unusual feature for the control architecture of a large scien-
tific instrument is the lack of any messaging middleware or
message bus.

A brief MeerKAT status update is given, and a high level
overview of the MeerKAT CAM architecture is presented
with a description of how it is used to meet CAM require-
ments in practice. The scalability and reliability of this
architecture are discussed.

MeerKAT DESCRIPTION AND STATUS
MeerKAT will be a 64-receptor1 aperture-synthesis in-

teferometric radio telescope array. Receptor antennas are
offset Gregorian antennas with a 13.5m main reflector in
a feed-low configuration. An offset optical configuration
has been chosen because its unblocked aperture provides
optimal optical performance and sensitivity with good rejec-
tion of unwanted radio frequency interference from satellites
∗ nmarais@ska.ac.za
1 A receptor logically groups the subsystems of a single antenna dish.

and terrestrial transmitters. It also enables the installation of
multiple receiver systems in the primary and secondary focal
areas and provides a number of operational advantages.

The antenna platform supports up to four receiver systems
mounted on a carousel, allowing the telescope to switch fre-
quency bands within minutes. The initial design committed
to cryo-cooled L-band receivers. Some experimental un-
cooled K-band receivers are installed during commissioning.
Since then, theMeerKAT project has committed to installing
UHF-band receivers and the Max-Planck-Institute for Radio
Astronomy has committed to funding and building S-band
receivers for MeerKAT.
MeerKAT receptors directly digitise the received signal,

without transmitting analogue signals to a central facility – a
first for radio telescopes. A central Time and Frequency Ref-
erence (TFR) subsystem using a GPS-disciplined Rubidium
clock provides a highly accurate absolute time reference and
a sub-picosecond accurate clock signal for phase-coherent
digitiser operation. The clock and timing pulses are dis-
tributed to the receptors via dedicated fibre links. The TFR
will later be upgraded to a MASER timing source.

Signals are transmitted from from the receptor digitisers
via multiple bonded 40 Gigabit Ethernet (40GbE) fibre links
to the Correlator-Beamformer (CBF) subsystem in the Ka-
roo Array Processor Building (KAPB) using the packetised
SPEAD [2] format. A separate physical Ethernet network is
used for CAM traffic from the receptors.

The CBF subsystem performs the first level of signal pro-
cessing and data reduction using the SKARAB open FPGA
platform [3], and multicast capable commodity 10/40GbE
switches as a data fabric. It produces correlated visibilities
for imaging, and beam-former voltage data that is consumed
by the Science Processing (SP) subsystem and optionally by
user supplied equipment provided by third parties. SP is a
software subsystem running on general purpose computers
in the KAPB, utilising GPU- and/or other forms of acceler-
ation. SP processes the CBF output into images and other
relevant science outputs, and also archives observation data.

Ancillary subsystems include: the MeerKAT site Camera
subsystem; the weather monitoring subsystem; the KAPB
building management subsystem that monitors ambient con-
ditions and RFI-door intrusion detection where appropriate;
the Power Distribution Units (PDUs) of several subsystems
to facilitate emergency power shutdowns. These subsystems
are not directly involved in observations but are monitored
to ensure safe and reliable operation of the telescope.
All subsystems are coordinated and monitored by CAM

using a logically separate CAM network, using Ethernet
as a fieldbus. Communication with all other subsystems is
via the Karoo Array Telescope communications protocol
(KATCP) [4]. CAM Device Translators are used to provide
a KATCP interface where this is not available natively.
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MeerKAT’s full functionality is divided into six Array
Release (AR1-AR6) milestones with the goal of deploying
AR1 in H1 2016. During 2014 all the earthworks, power and
other civil infrastructure were completed, including installa-
tion of fibre to all the receptor sites and construction of the
underground, RF-shielded KAPB that hosts the MeerKAT
data centre. First light was achieved with the first of the
64 receptors, confirming that the system as designed will
significantly exceed the 220 m2/K system sensitivity require-
ment once all 64 receptors are installed. This would make
MeerKAT the most sensitive L-band radio telescope in the
world. During 2014 the CAM subsystem team completed
feature development for the Receiver Test System (RTS), and
commenced detail design and development of the MeerKAT
AR2 features.

During 2015 the RTS was deployed to site. RTS is a stand-
alone mini-telescope system that can work with up to four
receptors for receptor acceptance testing and commission-
ing. RTS implements the minimum telescope functionality
needed to commission receptors. Antennas under test are
separated from the rest of the MeerKAT telescope data net-
work by patching their physical data fibres into the RTS
data-network switch, while the physical CAM network is
shared between RTS and MeerKAT through configuration
procedures.
Eight receptors are on site as of October 2015 and are at

various stages of integration, commissioning and acceptance
testing. Rolling construction and deployment of the remain-
ing receptors will take place through 2016 and into 2017.
New receptors are first added to RTS before graduating to
the operational MeerKAT system for science use.
During 2015 the implementation of the AR2 milestone

CAM functionality was completed and verified against simu-
lators pending the completion of other subsystems’ function-
ality. AR2 requires 16 science-ready receptors and a CBF
that produces a limited selection of correlator data products,
and an SP subsystem that ingests said products in real time.
Furthermore, basic subarray functionality is required.
The early phase of MeerKAT development is mostly

about constructing and commissioning the 64 Receptors and
procuring a sufficient number of SKARAB boards to provide
proposed CBF functionality. The later phases, while less
visible, encompass the majority of the “construction” effort.
Telescope functionality is added through software (CAM,
SP and CBF local control) and FPGA firmware (CBF).

COMMUNICATION LAYERS
The CAM architecture is divided into three layers of com-

ponents as shown in Figure 1 with connections strictly from
higher to lower levels, and a fourth category of CAM con-
troller components that collaborate as models and controllers
in the Model-View-Controller software model. Apart from
katportal clients that use http and websockets, all connec-
tions are made using KATCP over TCP/IP; each directed
arrow starts at a client making a TCP connection to a KATCP
server running at a well known IP and TCP port. For sub-
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Figure 1: CAM Layers and Observation Control.

systems external to CAM the IPs and ports are assigned by
System Engineering (SE), while CAM components have IPs
and ports assigned internally by CAM within the CAM IP
range2. These IPs and ports are maintained in the CAM
config (katconfig). All these connections are made via the
CAM network3.
Members of the Devices layer each expose a KATCP in-

terface, that is the interface between CAM and other subsys-
tems; they are described using Interface Control Documents
(ICDs) that are under SE configuration control. A single
subsystem may have multiple instances, e.g. Antenna Posi-
tioner (AP) has an instance per receptor; each instance runs
a separate KATCP server at a separate IP. These KATCP
interfaces represent the controller of a specific piece of hard-
ware, while the CBF and SP subsystems have their own
internal control systems and present virtual devices. De-
vices make no KATCP connections via the CAM network,
and act strictly as KATCP servers.

One level up are the CAM Proxies that make KATCP con-
nections to devices, and act as KATCP servers to CAM con-
troller components and to observation scripts. Each proxy
exposes a single KATCP interface, but may connect to mul-
tiple logically related devices. Each proxy is managed by
katpool (see next section) as a telescope resource. Devices
are interrogated for KATCP sensors and requests, and these
are proxied to the proxy’s KATCP interface. Multiple in-
stances of a proxy may exist, e.g. one receptor proxy per
physical receptor, one data proxy per logical subarray. A
proxy may implement special configuration/control for a
device; e.g. the receptor proxies implement pointing correc-
tions for the antennas.
Next come the CAM controller components that collec-

tively implement the “intelligence” of the CAM subsystem.
They may make KATCP connections to proxies and among

2 The telescope network is treated as an infrastructure subsystem. IP ranges
are assigned to various subsystems by SE.

3 The CAM network is further segmented to avoid inappropriate communi-
cation between layers; the katportal component interfaces with the rest
of the telescope LAN.
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themselves. At the top are the external telescope users. They
connect to the katportal component using web browsers
over authenticated http connections. They are allowed tele-
scope control on the basis of their assigned roles. The two
roles considered here are: Lead Operator (LO); and Control
Authority (CA). The LO manages the assignment of tele-
scope resources to subarrays, and the assignment of logged-
in users as CAs of a particular subarray. The CA manages
observations on a specific subarray. See [5] for more details
of the operator interface.

OBSERVATION CONTROL
Figure 1 shows the main component interactions during

observations. MeerKAT will initially have four4 subarrays,
but in the interest of space and clarity only two subarrays
and the interactions of only one subarray are shown.
katpool is purely an accounting component; it keeps track

of telescope resource allocations to subarrays and assign-
ment to observations of resources within a subarray. Com-
mensal observations are facilitated by only assigning control-
ling access of a resource to a single Observation Scheduling
Block (SB)5, while assigning non-controlling access to com-
mensal observation SBs. sched manages the observation
schedule of all the subarrays. subarray1 is the subarray
controller for “array1”, managing its lifecycle.

The LO signs in to katportal and puts subarray1 in con-
figuration mode. She assigns (via the web GUI [5]) the SBs
of the observations planned for her shift to subarray1, and
assigns a subset of receptors and CBF product resources to
subarray1 as required by the scheduled observations. kat-
portal requests sched (the CAM scheduler component) to
assign the requested SBs to subarray1 and requests katpool
to allocate the requested resources to “pool1” (subarray1’s
resources). katpool moves the resources from the “free”
pool to “pool1”, making them unavailable to other subarrays.
Satisfied with the configuration, the LO requests subarray
activation. katportal requests subarray1 to activate.

subarray1 observes pool to get its resource assignment.
Next it requests the CBF primary interface6 to set up “array1”
with the list of receptors to subscribe to. The CBF primary
interface is used for high level configuration and lifecycle
management of CBF arrays. It creates a secondary KATCP
interface for “array1”. The data1 proxy connects to this
interface and exposes it the higher layers. subarray1 then
requests data1 to activate the requested CBF products. CBF
now assigns and programs FPGA resources to produce the
requested products for “array1”. subarray1 configures SP
to receive the CBF data product in a similar way.
subarray1 enters the active state, and the LO is notified.

She delegates control to another user, making him the CA
for subarray1; katportal will now relay all CA requests to
subarray1. The CA puts the subarray1 schedule in queue
4 CAM could support more subarrays, but limitations in other subsystems,
the design of human factors in the control room, and the number of
receptors in the telescope limit the useful number of subarrays to four.

5 For scheduling, observations are broken up into several indivisible SBs.
6 Interactions with SP are not shown, but follow a similar pattern to CBF.

mode. subarray1 relays this to sched. sched selects SB1
from the subarray1 schedule and begins to activate it. It
requests katpool to assign resources from “pool1” to SB1.
katpool verifies SB1’s resource requirements against those
available in “pool1”. If insufficient resources are available,
the CA is notified, otherwise they are assigned to SB1.
Once resources are assigned, sched invites katexecutor

to execute SB1, and informs subarray1 that SB1 is now
active. katexecutor examines SB1’s instruction set to de-
termine which observation script to run and the appropriate
script parameters. It then launches the SB1 observation
script in a subprocess. The observation script uses standard
CAM Python library katcorelib to connect to subarray1; at
startup the observation script has no knowledge of the tele-
scope besides the address of subarray1 and its SB ID code.
Once connected, the script identifies itself as SB1. subar-
ray1 verifies that SB1 is indeed active, and replies with a
datastructure describing the telescope resources assigned to
SB1. This is passed to katcorelib which creates KATCP con-
nections to the resources as required. The script is given a
standard telescope object that exposes each KATCP resource
(i.e. proxy connection) as a separate client object which
exposes KATCP requests as function calls7 and KATCP
sensors as objects that can be polled, subscribed to, or mon-
itored for a specific trigger value. Resource group objects
allow all assigned receptors to be pointed to the same target
with a single call, or the same sensor to be monitored across
all the receptors. The observation script can now control its
assigned resources until SB1 completes. Data products pro-
duced by the CBF are captured and processed by SP. SB1’s
metadata is also sent to SP so that the captured data can be
accurately classified and archived.

Once SB1 completes, sched ensures via katexecutor that
the script has terminated (ensuring that all SB1’s KATCP
connections are also closed), updates SB1’s status to com-
pleted, and requests katpool to free the resources that were
assigned to SB1. sched selects the next SB from the sub-
array1 schedule, and repeats the process with the new SB.
At the end of the observations, the CA or LO can request
subarray1 to be freed. The CBF is instructed to depro-
gram “array1”, freeing up its FPGA resources, and katpool
frees resources allocated to subarray1 bymoving them from
“pool1” to the free pool.

MONITORING AND INTERVENTION
Figure 2 shows the main component interactions for tele-

scope monitoring and interventions and is a logical overlay
for Figure 1 – the monitoring connections are always open,
whether an observation is active or not.

A number of katmonitor instances8 make KATCP con-
nections to all CAM proxies and all CAM controller com-
7 katcorelib only exposes functionality that the observation script should
have access to by pruning the telescope object. Scripts could easily
bypass this mechanism, but they are vetted by CAM beforehand. A future
implementation might introduce an intermediate CAM component to
limit access.

8 Multiple instances allow multi-process scaling.
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Figure 2: CAM Monitoring and Control Intervention.

ponents, and subscribe to every sensor by setting sensor
strategies. katmonitor performs two functions on the re-
ceived sensor samples: They are buffered in memory for the
CAM sensor store [6], [7], and aggregation rules are applied
in real time. Aggregation rules are defined in katconfig e.g.
True if all the receivers on all receptors9 are cold. The re-
sult of the rule is exposed as a new KATCP sensor on the
katmonitor interface.
A single kataware instance observes all the kataware

instances and applies alarm logic to the aggregate sensors.
Alarm rules are read from katconfig. Each alarm has a rule
for triggering an alarm level (e.g. WARN or ERROR), and
an optional alarm action. katportal and katsyscontroller
observe the kataware alarm sensors. katportal notifies
logged in LO and CA users as appropriate; SMS, internet
relay chat (IRC) or email notifications may also be config-
ured. katsyscontroller implements the actions defined for
the alarm and is responsible for taking telescope-wide action
to ensure safe and reliable operation. It can make KATCP
connections (not show in in Figure 2) to any proxies or CAM
components needed to execute an action. Actions can be
predefined (e.g. stow all receptor antennas due to high wind),
or an arbitrary script file may be executed.

DISCUSSION AND SCALING ANALYSIS
MeerKAT CAM avoids the need for dynamic device dis-

covery since all the nodes in the system are described in
katconfig (see [1] for more details). This works well since
MeerKAT is fairly static in terms of physical configuration;
receptors are fixed in place, and have space for a limited
number of receivers. While MeerKAT may potentially be
expanded with more receptors, receptors are fairly homo-
geneous in configuration. Only a limited amount of unique
calibration data is required per unit, making it almost trivial
to add more receptors to katconfig.

9 A katmonitor instance can only apply aggregate rules to the subset of
proxies it is connected to. A multi-level katmonitor design is planned
that will remove this limitation.

Direct TCP connections between components avoid the
complication and overhead of message-bus middleware. All
critical CAM operations are idempotent, so the combination
of TCP andKATCP’s request / response or timeout paradigm
has been found to provide sufficient reliability. Some mes-
saging middleware provide message multicast features that
might improve efficiency for sensors with multiple listeners.
Analysis of the MeerKAT design shows that the katmoni-
tor components are the only high-bandwidth consumers of
sensor data, implying that sensor multicast would not save
much traffic.
From the CAM perspective, scaling a radio telescope es-

sentially implies managing a larger number of receptors and
associated sensor data. The CAM proxies are inherently
scalable, since a separate proxy process is used per recep-
tor and no state is shared. katmonitor is similarly scalable.
The CAM sensor store and katportal GUI are already de-
signed for performance scalability [6], [5]; katportal might
need some redesign due to human factors. Most of the CAM
control components (sched, katpool, subarray1...N and ka-
texecutor) have very low transaction rates or are not directly
exposed to the number of receptors.
A potential bottleneck is the observation scripts since

they need to address every receptor. However, only a hand-
ful of receptor interactions are required per SB (continuous
antenna pointing is handled by the receptor proxies), so
this approach should suffice even for thousands of recep-
tors. A similar concern applies to kataware. The addition
of a multi-process receptor instruction repeater component
would address this bottleneck should it ever become a limit-
ing factor.
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