
NEUTRON SCATTERING INSTRUMENT CONTROL SYSTEM

MODERNIZATION - FRONT-END HARDWARE AND SOFTWARE

ADAPTION PROBLEMS

Abstract

When the FRM-2 neutron source went into operation

(2002) and many instruments were moved from the closed-

down Juelich reactor to the new facility, it was agreed on

a choice of front-end hardware and the TACO middleware

from ESRF. To keep up with software standards, it was de-

cided recently to switch to TACO’s successor - the TANGO

control software. For a unified "user experience", new

graphical user interface software "NICOS-2" is being de-

veloped by the software group at FRM2.

While general semantics of TACO and TANGO don’t

look very different at a first glance, and adaption of device

servers seemed to be straightforward at first, various prob-

lems in practical operation were found, due to difference in

state handling, timing behavior and error reporting. These

problems, and the changes that had to be made to ensure

reliable operation again, will be described.

INTRODUCTION

After some different developments turned out to be rather

short-lived, partly due to political reasons, partly due to

manpower issues, the "NICOS2" instrument control and

user interface framework got administrative backing and de-

veloper personnel to be further maintained and adopted by

neutron scattering instruments at FRM-2. (See [1] and [2]

for some historic information.)

For device access, it was decided to abandon TACO and

rewrite device servers to use the more modern TANGO

framework. Since the basic functionality of TANGO device

servers, the remote, synchronous, execution of commands,

is quite similar to that of TACO, an easy migration was ex-

pected. It was assumed more or less that the old implemen-

tation of device server commands just needed to be adapted

to a slightly different API syntax.

BOUNDARY CONDITIONS, DEVICE

SERVER ARCHITECTURE

A number of device servers, in particular those which

handle detectors, have a structure as shown in Fig. 1.

It is often a matter of discussion whether detector data

which come as individual events should be histogrammed

immediately during data acquisition. It is not subject of

this paper to discuss this design decision – it should just be

considered that real-time histogramming needs to be done

anyway, because instrument operators want a live picture

of measured data. If single event data provide no additional

advantage, the cost (both in terms of runtime overhead and

Shared Memory

Hardware Interface Library

(DMA Handling)

Histogramming

Front End

Hardware

Device Server

Client Client
Data

Base

Parameter Histogram

Command

Line

...

(using TACO / TANGO

 Framework)

Figure 1: Structure of a detector device server which does

real-time histogramming of incoming data.

storage media) can be saved. Up to now, no compelling rea-

son for single event data was found.

Since TACO is not multithreaded from the beginning,

and very likely not prepared to run with multiple threads

active (actually, it was seen some years ago that even the un-

derlying RPC library was not thread-safe), detector access

was put into a separate process which runs asynchronously

to TACO command execution. Another advantage of this

was that the detector code could be run from a standalone

process, for tests when the TACO manager and database ser-

vices were not available.

Communication between the server core and the detec-

tor access program uses shared memory — keeping a table

telling detector parameters (e.g. TOF slot settings) in one

direction and the detector data histogram in the other. The

shared memory was implemented as a memory-mappedfile.

This was helpful for debugging because the histogram data

could be looked at everytime just using standard UNIX com-

mand line tools like od(1)/hexdump(1).

NICOS is a comfortable user interface to control the in-

strument, define and run measurement scans, show a life

display of detector data and support logging and event han-

M. Drochner, L. Fleischhauer-Fuss, H. Kleines, M. Wagener, S. v. Waasen
FZ Jülich / ZEA-2, Jülich, Germany

Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF058

Experimental Control

ISBN 978-3-95450-148-9

233 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

dling. Figure 2 shows just a little part of it, a window which

shows results of instrument state polling.

This comes at a cost – it scans the instrument state perma-

nently and accesses device servers from multiple threads.

Figure 2: Screenshot of a status display window of the

NICOS UI.

PROBLEMS SEEN, ANALYSIS AND

SOLUTIONS

While the new TANGO device servers worked well in

tests using just simple clients which do a single action at a

time, strange errors occured when the full NICOS interface

was used. Commands to start or stop a measurement failed

due to timeout for no apparent reason (which is considered

fatal), and the background task updating process variables

for status display got timeouts as well (which is not fatal

but leads to slow UI updates and logged error messages).

Bumping the TANGO client timeout, even to unreasonably

high values, did not help.

The error messages did indicate a "serialization timeout"

in the depth of TANGO. After asking the original develop-

ers (see [3]) this led to the explanation that not the command

currently executing is to blame for being too slow, but a com-

mand started previously by some other client task.

Each TANGO client connection is handled by its own

thread. As Fig. 3 illustrates, these threads need to synchro-

nize before hardware is dealt with, or if data global to the

device are accessed. The maximum time to acquire this syn-

chronization mutex is fixed to 3 seconds within the TANGO

server framework.

Since the status display part of TANGO polls the state

of devices permanently, and measurement control is done

from another thread, there is a certain likelihood that calls

collide and need to be resolved by the synchronization mu-

tex. With TACO (see [4]), there was just a single thread

multiplexing all client connections (select(2) in UNIX). An

incoming request did stay in the network buffer queue until

the server got ready to handle it, without any timeout. As

long as the TACO clients had set their transaction timeouts

large enough to cover the worst case, no error was reported –

just sluggish user interface behaviour was possibly noticed.

Command

ExecutionSerialization

with Timeout

Client

Thread
Client

Thread...

Client Accesses

(with Timeout)

Figure 3: TANGO timeouts for transaction and serializa-

tion.

This means in effect that no commandwithin the TANGO

server can be allowed to take more than 3 seconds, because

subsequent commands or data accesses might be issued by

another client within that time window. All commands

which operate on slow hardware, and which we could just

easily deal with before by bumping the TACO timeout need

to be split into two halves – one which initiates the action

and one which polls for the result.

One might argue that the fixed 3-second timeout can be

easily fixed and made adjustable, but, on the other hand, any

limit might be too small if a certain number of client threads

is in the waiting queue. So it would have been a possible so-

lution to handle errors differently in the clients and allow

retries if possible. This would lead to practical problems

however because client code is written by different people

(most notably the NICOS developers), and it is not always

obvious which commands are idempotent or where side ef-

fects can occur.

So it was decided to make sure that all TANGO com-

mands are executed within much less than 3 seconds. It has

shown that even simple operations like starting (fork(2) in

UNIX terms) or stopping the external histogramming pro-

cess mentioned above can take longer, depending on usage

history (whether the program and data needed are already

in cache) and operating system background activity. It even

happened that the act of zeroing the histogram data array

(256MBytes – for 64 channels and 20 bits time resolution)

was not done in time after a period of inactivity, obviously

because the data were paged out to swap space. The ma-

chine these problems were observed on, and where the prob-

lems were tracked down, is a Core2Duo with 2GBytes of

memory. This is certainly not a powerful system by today’s

measure, but absolutely appropriate for a front end com-

puter which just has a single task to fulfill.

MOPGF058 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

234C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experimental Control

To be able to finish the TANGO calls in time, command

semantics had to be redefined to be asynchronous. The com-

mand now just initiates the actions and returns immediately,

actual work is done in a background thread. The TANGO

server returns some "busy" state until the command is fin-

ished. The client needs to poll the state before it issues an-

other command. This kind of side-steps the serialization

mechanism described above, but it allows for more flexibil-

ity because clients can wait as long as appropriate for com-

mand completion.

Unfortunately, we could not add individual "busy" states

telling all clients what the server is currently waiting for.

The semantics of TANGO states is well-defined and custom

values would cause confusion in other parts of the frame-

work.

CONCLUSION

One can’t assume that a TANGO installation works like

"TACO, just using CORBA instead of Sun-RPC", even if

just the subset of TANGO was used which is analogous

to functions provided by TACO. The changes in timing be-

haviour are subtle, but require design changes towards asyn-

chronous operation if any command can possibly take more

than three seconds.

This three seconds limit must be met, even if the operat-

ing system (which is not aware of real-time requirements)

has dedicated memory and CPU ressources to other tasks.

On unfortunate occasions, even seemingly innocious acts

like clearing some hundreds of megabytes of histogram data

hits that time limit.

A standard desktop installation comes with many service

tasks which potentially eat up system ressources and slow

down intended uses, and there is a tendency that memory

requirements grow on each software upgrade. Thus, hard-

ware upgrades need to be done early enough.

REFERENCES

[1] T. Unruh, Instrument Control at the FRM-II using TACO and

NICOS, Proceedings of the NOBUGS 2002 conference, 2002,

arXiv cond-mat/021043

[2] M. Drochner et al., Adoption of the "PyFRID" Python Frame-

work for Neutron Scattering Instruments, ICALEPCS 2013,

San Francisco CA, 2013.

[3] TANGO control system, http://www.tango-controls.org/

[4] TACO control system, http://www.esrf.eu/

Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF058

Experimental Control

ISBN 978-3-95450-148-9

235 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

