
QUICK EXPERIMENT AUTOMATION MADE POSSIBLE USING FPGA

IN LNLS

M. P. Donadio∗, H. D. Almeida, J. R. Piton

CNPEM / LNLS, Caixa Postal 6192, Campinas - 13083-970, Brazil

Abstract

Beamlines at LNLS are being modernized to use the syn-

chrotron light as efficiently as possible. As the photon flux

increases, experiment speed constraints become more visible

to the user. Experiment control has been done by ordinary

computers, under a conventional operating system, running

high-level software written in most common programming

languages. This architecture presents some time issues as

computer is subject to interruptions from input devices like

mouse, keyboard or network. The programs quickly became

the bottleneck of the experiment. To improve experiment

control and automation speed, we transferred software algo-

rithms to a FPGA device. FPGAs are semiconductor devices

based around a matrix of logic blocks reconfigurable by soft-

ware. The results of using a NI Compact RIO device with

FPGA programmed through LabVIEW for adopting this

technology and future improvements are briefly shown in

this paper.

INTRODUCTION

Experiments at LNLS historically were made using soft-

ware running in conventional operating systems. Our first

software for beamline control centralized all the operations,

sensor reading and actuators controlling in a single thread.

This was the cause of lots of disturbances in motor move-

ment, when the user moved a mouse or selected a menu item,

which almost never ran in a smooth pattern. We could see

also a big dead time caused by many tasks running sequen-

tially rather than in parallel.

In 2010 we started to use EPICS [1] and, this way, we

could decentralize all the access to the devices. Doing so, we

could get many improvements in motor controlling and re-

duction of dead time. The system became easier to maintain

as each device is accessed by a single piece of stan-dalone

software. Another advantage was to provide the infrastruc-

ture to build a web system named LabWeb [2], based on

Science Studio [3] developed and applied at the Canadian

Light Source (CLS), that became possible for users to oper-

ate the beamline from their universities.

From 2010 until recently in the current year not only the

software, but most of the control hardware was replaced

in all beamlines. After some years developing, improving

and using the new EPICS based system, we faced a new

challenge: the beamlines had its photon fluxes and detector

sensitiveness increased by the hardware improvement and

software was again the bottleneck for some experiments.

EPICS can provide a good experiment control using only

∗ marcio.donadio@lnls.br

software and not firmware, in conventional operating sys-

tems, if there is no concern about times lesser than 100

ms. Control loops quicker than 10 Hz are not guaranteed

to be attended inside a good error limit. To go beyond this

limit we needed to change the paradigm adopting a real-time

system, for example, or implementing the fast piece of the

experiment in hardware.

The first beamline to see this limitation was IMX [4],

followed by XRF [5]. Both needed to synchronize motor

position, detector shot and shutter in a few milliseconds with

error margin of some microseconds.

The third beamline case was SAXS1 [6], whose system is

presented in this paper. The development of the system for

SAXS1 was used also to test the approach to the beamlines

that will be built in Sirius [7], the new Brazilian Synchrotron.

The timing for Sirius beamlines needs to be in the microsec-

ond loop or faster.

SAXS1 HARDWARE

We need a system with low jitter between the trigger signal

and the start and the end of data acquisition. Going near

the hardware is an approach to reduce jitter and that is the

motivation to choose FPGA technology. We had available in

our inventory a cRIO NI 9144 [8], a unit with FPGA, so this

was a natural choice to use in the work. cRIO NI 9144 can

be connected to a PXI [9] only by an EtherCAT connection.

Figure 1 shows the connection between the cRIO and

detectors and actuators.

There are two main detectors, a Pilatus [10] 300K to mea-

sure SAXS and a Pilatus 100K to measure WAXS. Pilatus

300K is configured to collect data in a determined frequency

and sends a trigger TTL signal every time an acquisition is

being done. cRIO is responsible to send a TTL trigger to

Pilatus 100K as it can start acquisition.

Two photo-diodes provide the beam intensity data through

a Stanford SR570 [11]. One of the photo-diodes is located

in the beam stopper and receives radiation after the sample.

The other one is located before the sample and receives the

reflection of a small part of the beam thanks to a mylar or

kapton thin film positioned in a 45-degree angle related to

the beam. cRIO reads the voltage data from Stanford SR570

using a NI 9215 module [12].

cRIO also controls a fast shutter to limit to a minimum

the time the sample is irradiated, by opening the shutter only

when Pilatus is acquiring.

A cRIO is used to:

• run the FPGA code that sequences the experiment

• read voltage from Stanford using a NI 9215 module

Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF057

Experimental Control

ISBN 978-3-95450-148-9

229 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Figure 1: SAXS1 Hardware Connections.

• read trigger signals from Pilatus and to write trigger

signals also to Pilatus and to the fast shutter using a NI

9402 module [13].

Figure 2 shows the connection between cRIO, PXI and

EPICS clients.

Figure 2: SAXS1 cRIO - PXI connection.

Data collected in cRIO is transferred to the PXI through

an EtherCAT connection to be used by a software running in

LabVIEW RT operational system inside the PXI controller.

Data from LabVIEW RT is passed to the Linux running

in the same PXI by Hyppie [14, 15]. In Linux we have an

EPICS IOC that sends the collected data to client software

by using the beamline network.

FPGA IN cRIO

FPGA in cRIO is programmed using LabVIEW [16].

FPGA code is responsible to control the experiment se-

quence: receive trigger signal → open shutter → collect

voltage from Stanford until trigger signal is low → close

shutter→ calculate voltage average during the time the trig-

ger signal was high→ save the data.

Figure 3 shows the loop where data is collected from the

analog input module and summed over the time. When the

trigger signal goes TTL low, a division of the sum by the

number of loop iterations is made to calculate the voltage

average while the detector was acquiring. Not shown in this

picture, this average is saved in a FIFO for later use. Let’s

call this FIFO as FIFO_PDn.

Figure 3: FPGA Voltage Acquisition.

The code is also responsible to administrate data sending

over EtherCAT. This is the part of the FPGA code in the

deterministic domain. Figure 4 shows a loop where cRIO

waits for the rising edge of Scan Engine [17] clock. When

MOPGF057 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

230C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experimental Control



it arrives, an inner loop gets all data from FIFO_PDn and

writes it to a sequence of 50 shared variables per photo-diode,

emulating an array. As the Scan Engine speed of cRIO is

set to 500 µs in this experiment and 100 data values are sent

per EtherCAT packet, we guarantee that the software is able

to collect one analog data per photo-diode each 10 µs and

send it to the PXI with no data loss. Each data uses fixed

point representation with 5 bits for integer part and 20 bits

for decimal part. No handshake is implemented because

transmission of data over EtherCAT is deterministic and

lossless. In fact, we ran millions of tests at the maximum

rate and never got a single data loss. Nevertheless it is

possible to diagnose when a data is lost and, in this case, the

experiment is aborted.

Figure 4: FPGA sends data to LabVIEW RT.

SOFTWARE IN LabVIEW RT

Inside LabVIEW RT there is a LabVIEW software re-

sponsible to get information from cRIO and to send it to

the shared-memory between LabVIEW RT and Linux. The

program collects data using a real-time loop synchronized

with the scan engine period (Fig. 5). This is the part of the

LabVIEW RT code in the deterministic domain. Doing so it

is guaranteed that no data will be lost, as long as the loops fit

within the scan engine cycle period, because the EtherCAT

cycle is synchronized to the scan engine cycle. In the case

of communication failure, experiment is aborted.

Figure 5: LabVIEW RT software gets data from FPGA.

The collected data is written in an array and is sent to

the shared-memory asynchronously. The array is passed to

the Linux IOC using Hyppie. The Hyppie shared-memory

structure used is described in Table 1 and 2. The tables show

the description of each memory address and points which

software is responsible to write in it: software running in

LabVIEW RT or the IOC running in Linux.

Table 1: Shared-memory Structure - Part 1

Addr Description Written by

0 Command RT /

Linux

1 Status message (0 = stopped, RT

1 = running)

2 Last error found RT

3 Current measurement point RT

4 - 13 Current amount of data RT

read from cRIO Diode 1 - 10

14 Delay time before each Linux

frame acquisition (in ms)

15 Delay time after each Linux

frame acquisition (in ms)

16 Number of points to Linux

measure (maximum 1000)

17 Trigger from? (1 = Pilatus, Linux

2 = environment)

18 Close Shutter Linux

Table 2: Shared-memory Structure - Part 2

Addr Description Written by

19 - 28 Type photo-diode 1 - 10 Linux

(1=Stanford,2=Keithley)

29 Dark current time(in ms) Linux

30 - 39 Dark current value RT

from photo-diode 1 - 10

40-1039 Measurement array RT

photo-diode 1

1040-2039 Measurement array RT

photo-diode 2

SOFTWARE IN LINUX

In Linux we developed some device supports [18] that

read data from the shared-memory, using Hyppie to access

memory addresses described in Tables 1 and 2. This IOC

provides PVs [19] to configure, start, stop and read parame-

ters from the experiment sequencer programmed in cRIO’s

FPGA. To access these PVs we are using Py4Syn [20] and

CS-Studio [21] as EPICS clients.

RESULTS AND DISCUSSION

Figure 6 shows on the top the trigger signal that is sent

to the system, with 1.25 µs high and 20 µs low, resulting in

Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF057

Experimental Control

ISBN 978-3-95450-148-9

231 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



a total period of 21.25 µs. On the bottom we can see the

signal that indicates when FPGA stopped to read the voltage

signal and detects that the trigger signal was low. We could

run all the algorithm in FPGA cyclically with a worst case

period of 21.25 µs (see the red square in Fig. 6). In the best

case we could get 13.6 µs, as seeing in the first trigger pulse

shown in Fig. 6. The acquisition time of NI 9215 module

is approximately 10 µs and we read it inside a loop. The

time difference between the best and the worst case happens

when the trigger signal goes low in some point of the start of

this loop. So FPGA runs another complete acquisition time

before detecting that the measurement needs to be stopped.

Figure 6: Time to detect trigger unset signal.

CONCLUSION

This entire system is used in simple SAXS and WAXS

acquisitions, using or not chemical kinetics or any other

complex experiment using synchronization of the system

with the sample, as temperature and tensioning forces acqui-

sitions with good stability. The period of 21.25 µs outranges

the frequency needed by SAXS1 beamline - 20 Hz - as the

fastest image acquisition that can be done is 50 ms, due to

available x-ray flux. Even with sufficient flux, the next bot-

tleneck would be the fast shutter that opens in 25 ms and

closes in 15 ms.

Despite that, the presented system was built to be pre-

pared for new challenges in Sirius. In fact, the new Coherent

and Time-Resolved Scattering beamline that will be built in

Sirius, named CATERETE, will study fast kinetics in mi-

crofluidic and the beamline will need a few microseconds in

resolution. So we could say that the architecture presented

here is a strong candidate for Sirius beamlines control so-

lutions. Nevertheless, we will need to build faster systems

to achieve our new nanoseconds frontier and keep the work

that was started with the presented system.

ACKNOWLEDGMENT

The authors want to acknowledge SAXS1 beamline staff

Florian Edouard Pierre Meneau, Tiago Araújo Kalile and

Carolina Vieira Comin who tested this system over and over,

adding valuable comments and suggestions to improve relia-

bility, correctness and precision of the solution.

REFERENCES

[1] EPICS website: http://www.aps.anl.gov/epics/

[2] H. H. Slepicka et al., “LabWeb – LNLS Beamlines Remote

Operation System”, TUPPC037, Proc. ICALEPCS 2013

[3] N. Sherry et al., “Remote Internet Access to Advanced Analyt-

ical Facilities: A New Approach with Web-Based Services.”,

Analyt. Chem., 2012, Vol. 84 (17), p. 7283–7291

[4] G. B. Z. L. Moreno et al., “On-the-Fly Scans for Fast To-

mography at LNLS Imaging Beamline”, these proceedings,

THHB3O03, ICALEPCS 2015, Melbourne, Australia (2015).

[5] XRF description: http://lnls.cnpem.br/beamlines/

xafs/beamlines/xrf/

[6] SAXS1 description: http://lnls.cnpem.br/

beamlines/saxs/x-ray-beam/

[7] L. Liu et al., “Update on Sirius, the New Brazilian Syn-

chrotron Light Source”, MOPRO048, Proc. IPAC2014

[8] NI 9144 Expansion Chassis Under the Hood (2012)

[9] What is PXI? (from NI)

[10] Hybrid Photon Counting Detectors for Your Laboratory (from

Dectris)

[11] MODEL SR570 Low Noise Current Preamplifier Manual

(from Standford Research Systems)

[12] Operating Instructions and Specifications NI 9215 (from NI)

[13] Operating Instructions and Specifications NI 9402 (from NI)

[14] J. R. Piton et al., “Hyppie: a Hypervisored PXI for Physics

Instrumentation under EPICS”, MOPG031, Proc. BIW12

[15] J. R. Piton et al., “A Status Update on Hyppie - a Hypervisored

PXI for Physics Instrumentation under EPICS”, TUPPC036,

Proc. ICALEPCS 2013

[16] LabVIEW System Design Software (from NI)

[17] Using the NI Scan Engine (ETS, VxWorks, Windows) (from

NI)

[18] Basic EPICS Device Support, M. Davidsaver: https:

//pubweb.bnl.gov/~mdavidsaver/epics-doc/

epics-devsup.html

[19] EPICS Channel Access Overview, K. Kasemir, p. 5 -

6: https://ics-web.sns.ornl.gov/kasemir/train_

2006/1_3_CA_Overview.pdf

[20] H. H. Slepicka, et al., “Py4Syn: Python for Synchrotrons”, J.

Synchrotron Rad. 22, pp. 1182-1189 (2015).

[21] Control System Studio:

http://controlsystemstudio.org/

MOPGF057 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

232C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experimental Control


