
SYNCHRONISING HIGH-SPEED TRIGGERED IMAGE AND META DATA

ACQUISITION FOR BEAMLINES

N. De Maio, A. P. Bark, T. M. Cobb, J. A. Thompson

Diamond Light Source Ltd., Didcot OX11 0DE, UK

Abstract

High-speed image acquisition is becoming more and more

common on beamlines. As experiments increase in complex-

ity, the need to record parameters related to the environment

at the same time increases with them. As a result, conven-

tional systems for combining experimental meta data and

images often struggle to deliver at a speed and precision

that would be desirable for the experiment. We describe an

integrated solution that addresses those needs, overcoming

the performance limitations of PV monitoring by combining

hardware triggering of an ADC card, coordination of sig-

nals in a Zebra box [1] and three instances of areaDetector

streaming to HDF5 data. This solution is expected to be

appropriate for frame rates ranging from 30Hz to 1000Hz,

with the limiting factor being the maximum speed of the

camera. Conceptually, the individual data streams are ar-

ranged in pipelines controlled by a master Zebra box, ex-

pecting start/stop signals on one end and producing the data

collections at the other. This design ensures efficiency on

the acquisition side while allowing easy interaction with

higher-level applications on the other.

INTRODUCTION

The kinds of data rates coming out of a typical modern

synchrotron beamline continue to push up against the current

limits in experimental complexity, processing power and

storage space. Ongoing improvements in automation and

computing infrastructure help scientists get past those limits,

decreasing the time individual scans of a sample take to set

up and carry out.

When it comes to taking data, a number of well-

established technologies and beamline designs provide stable

frameworks to acquire as much as possible across a number

of different devices and channels. Each of these comes with

its own requirements with regards to configuration and op-

eration. Each of these may or may not also provide its own

native mechanisms to sample data at user-defined regular

intervals.

Getting these devices to perform their measurements in

a synchronised way poses some unique challenges. If the

samples are taken a sufficient time apart, the middleware

layer provided by the controls software can, and often does,

take on the role of coordinator. But there is a point where

the interval between two samples gets too small to guarantee

accurate time stamps. Different devices may also expect

different kinds of triggers, and every additional layer of soft-

ware mediating between those makes the delays between the

data acquisition system and the hardware more unpredictable.

Figure 1 illustrates this problem.

Figure 1: Unsynchronised trigger and data flow during image

acquisition.

ARCHITECTURE

The answer to coordinated sample acquisition at small

time scales is to use hardware triggering. Using a Zebra

box [1], we present a design for a fast data acquisition sys-

tem intended for sampling rates within the range of 30Hz

and 1kHz. It not only coordinates the different hardware

triggers involved but also bundles the acquired samples in

three parallel pipelines, resulting in three files containing

measurements for the same time frame.

Figure 2 gives an overview of the architecture. As Diamond

Light Source (DLS) uses EPICS [2] as its control system,

we rely on the areaDetector framework [3] and the EPICS

implementation of the Zebra driver for configuring and col-

lecting data from the underlying devices. We also rely on

areaDetector plugins to post-process this data to some extent

and to redirect it to files.

The control signal flow in our model is driven by the Ze-

bra box. In our beamline-specific application, it receives

an external trigger signal of its own. That signal causes

the Zebra to produce one or more outgoing pulses, which

are then forwarded to the connected devices. The incoming

pulse need not be another hardware signal. Arm or Acquire

commands to the relevant PVs are just as suitable because it

is the configuration of the FPGA logic in the Zebra that ulti-

mately decides what kinds of pulses to send out in response,

and how many.

If individual devices expect different pulse shapes as trig-

ger signals, the Zebra box acts as a mediator between incom-

ing and outgoing triggers while ensuring that all outgoing

pulses are sent off at the same time. If they are capable of

receiving external triggers, they should be set to operate

in this way. If they are not, the trigger signal needs to be

recorded on one of the data channels so it can be extracted

Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF056

Experimental Control

ISBN 978-3-95450-148-9

225 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Figure 2: Zebra-driven data acquisition architecture.

later. We describe an EPICS-based way of doing that in our

beamline-specific application in the next section.

The number of devices controlled in this way is only lim-

ited by the number of outgoing connectors on the Zebra box.

So it is completely possible to trigger more than one type

of detector or ADC card at once - or any other device that

meets the requirements outlined in the previous paragraph.

Each of the devices involved has an instance of areaDetec-

tor associated with it. They ensure a consistent interface to

EPICS and enable the architecture to write generic frames to,

typically, HDF5 files. They also provide a well-defined set

of parameters to interact with when configuring a specific

scan or experimental run.

It is also worth pointing out that the entire design is is

self-contained within the EPICS control system. So once

the three pipelines are set up and configured, all a larger

application needs to do is send start and stop commands to

one end and pick up the data files at the other.

IMPLEMENTATION

Besides the areaDetector framework, the EPICS control

system also provides drivers for a number of different cam-

eras. These typically derive from areaDetector and use it in

the conventional way, to acquire a series of image frames.

Although an essential part of our data acquisition system,

we did not need to extend any of them to make them work

within it. So they will not be discussed further here.

The Zebra box and the ADC card, on the other hand, do

not produce image frames but time series of samples across

a set of channels. So the interpretation of a frame changes:

it no longer represents an image in the traditional sense but a

kind of ribbon of sampled values. Because we group several

channels together, we continue to acquire two-dimensional

data. As such, the areaDetector framework remains a suit-

able abstraction layer for this kind of measurement. The

width of such a frame is fixed and corresponds to the num-

ber of available input channels. By contrast, the height has

to be set by the user. As we explain below, approaches on

what to set it to vary depending on the device.

The hardware triggering presented another, unrelated set

of problems. While external trigger signals are a native

feature of the Zebra box, our choice of ADC card does not

really have this feature in a way that is useful to us. So

both devices needed different kinds of drivers and driver

extensions, which needed to be in line with the requirement

that they both fit into the areaDetector framework. But on

top of that, our ADC cards need to have the trigger signal

fed in as data so one of the areaDetector plugins can extract

it later. We will discuss each of those aspects in turn.

MOPGF056 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

226C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experimental Control



areaDetector Driver for Zebra

The original Zebra driver, developed at DLS, derives from

class asynPortDriver and uses a serial port to communicate

with the hardware. It also stores samples from ten different

channels (encoder inputs, results of some of the logic blocks)

in individual waveforms whenever a trigger is issued. So the

time series for all of the channels are already available but

there is no time stamp to go with them, and no native way

of writing them to file.

Changing the inheritance chain of the Zebra to ADDriver

turns it into an areaDetector. As ADDriver itself derives

from asynPortDriver, no existing functionality is lost. In-

stead, the new parent gives the Zebra driver access to all of

the areaDetector data structures. Figure 3 shows the details of

the old and new parent class relations.

Figure 3: Old Vs. new inheritance tree for a Zebra driver in

EPICS.

Every time the ten channels are sampled for the wave-

forms, we now store the same values as an NDArray in an

areaDetector frame. A time stamp is added as the eleventh

column. The Zebra’s native interpretation of the Arm and

Disarm commands as representing the beginning and end of

a scan makes them equivalent to the start and stop points of

an areaDetector acquisition. We extended the driver to treat

them equally as a result. So while we acquire a stack of N

frames from the camera during a scan of N points, we also

get a stack of N one-line frames from the Zebra.

areaDetector Driver for D-tAcq ADC

DLS developed the original version of the areaDetector

driver for the D-tAcq [4] ADC card. It connects to TCP port

4210 to read a continuous stream of data from the ADC, and

to TCP port 4220 to send control commands to it. As the

ADC samples its channels at a fixed rate, the driver’s main

task is to collect the samples reliably and store them as lines

in a frame.

The sampling rate of the D-tAcq ADC far exceeds the

frame rates we expect to see during our scans. Since we have

no way of turning the data stream on and off, the driver’s

main focus is on capturing everything in sensible chunks

for further combined processing in the downstream plugins.

One of those chunks corresponds to a frame of raw data.

This turns the user-defined frame height into more of a per-

formance parameter: because everything runs in continuous

mode, the length of a scan is defined in the file writer plugin

instead.

The fact that there is no way to connect a native external

trigger signal to the device was one of the most difficult

conceptual challenges to overcome. In the end, we achieved

it not within the device driver itself but by using a specialised

areaDetector plugin. Using the trigger signal recorded on

one of the data channels, it turns the massively over-sampled

raw data into a series of one-line frames after the fact.

Using areaDetector’s eframing

The key to extracting the ADC samples from the raw data

stream at the appropriate rate lies in the reframing plugin for

areaDetector developed at DLS. It needs to be told which

channel the triggers were recorded on in the raw data frame,

and what the threshold value for a trigger pulse was for

the application at hand. It then uses this information to

downsample the incoming data by picking out those lines

that have a trigger pulse in them. Each time a trigger is found,

it reads out a user-defined number of lines - one in our case

- into a new frame, creating a second data stream. It is this

post-processed stream that is handed over to the downstream

plugins. Figure 4 explains the exact relation between the two

streams.

Every time a raw frame reaches the reframing plugin, there

is a burst of re-sampled frames going to the downstream

plugins, followed by a pause until the next raw frame arrives.

So there are some practical considerations that need to be

observed when setting up the core driver and plugins. As

mentioned, the frame height in the raw data stream influences

performance. During our tests, it became apparent that a size

that corresponds to about one frame per second strikes the

best balance between filling up the queue for the reframing

plugin and overwhelming those of the downstream plugins

during bursts. Even so, the queue sizes need to be far larger

than for other areaDetector applications. A value around

1000 lets them cope with bursts every second or so with a

comfortable margin.

The reframing plugin also expects a threshold voltage to

be able to identify trigger pulses from the raw data frames.

Since the pulse comes from a Zebra and we trigger on a

rising edge, a value of 3V has turned out to be appropriate

for this purpose in the early tests.

INTEGRATION

While it is perfectly possible to use the pipeline manu-

ally, its real power comes from controlling the endpoints

using either Python scripting or a data acquisition package -

GDA [5] in our case.

As long as the high-level application knows about PVs, it

R Plugin

Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF056

Experimental Control

ISBN 978-3-95450-148-9

227 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Figure 4: Data flow in the areaDetector plugin chain. Unusually, the raw data stream is discarded after the downsampling

step in the reframing plugin and a stream of new frames of a different size is passed on to the downstream plugins.

can configure and monitor the lower-level devices using ca-

put, caget and camonitor. It can also aggregate the results

into NeXus files that provide a single entry point into the

collected data from the three pipelines. Because it knows

about the rest of the experimental setup, it can start and stop

acquisitions and file captures at the appropriate times.

Figure 5: Role of high-level data acquisition package.

Figure 5 shows how GDA or a similar application brackets

the lower-level components during a scan, acting in a kind of

management role. This approach turns the entire integrated

data acquisition system into a single building block within

the beamline infrastructure.

CONCLUSION

Using hardware-based trigger signals in combination with

the Zebra box’s programmable FPGA logic ensures exact

timing and synchronised acquisition of data and meta data

at higher sampling rates. EPICS drivers derived from areaD-

etector provide a well-defined interface to configure the sys-

tem as a whole, all the way down to its individual compo-

nents. Structuring the controls and data flows in three paral-

lel pipelines allows us to integrate such a system into the rest

of the beamline software infrastructure in a modular way.

While there are some performance parameters to keep in

mind when interacting with the ’pipeline-within-a-pipeline’

chain of areaDetector plugins, using them is essential and

ultimately adds to the overall flexibility when choosing indi-

vidual hardware components. Fine-tuning and testing of the

complete system is ongoing and we expect to deploy it to

one of our high-throughput tomography beamlines at some

point next year.

ACKNOWLEDGEMENT

The authors would like to acknowledge that the original

Zebra driver was developed by Tom Cobb, DLS, the D-tAcq

driver by Adam Bark, DLS, and the areaDetector reframing

plugin by Edmund Warrick, DLS.

REFERENCES

[1] T.M. Cobb, Y.S. Chernousko, I.S. Uzun, “ZEBRA: A Flexible

Solution for Controlling Scanning Experiments”, Proceedings

of ICALEPCS 2013.

[2] EPICS collaboration website: http://www.aps.anl.gov/

epics/

[3] areaDetector documentation: http://cars9.uchicago.

edu/software/epics/areaDetector.html

[4] D-tAcq website: http://d-tacq.com

[5] GDA website: http://www.opengda.org

MOPGF056 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

228C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experimental Control


