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Abstract

The Linac Coherent Light Source (LCLS) is a free
electron laser (FEL) facility operating at the SLAC
National Accelerator Laboratory (SLAC). A stripline
beam position monitor (BPM) system was developed at
SLAC [1] to meet the performance requirements
necessary to provide high-quality stable beams for LCLS.
This design has been modified to achieve improved
position resolution in a more compact form factor.
Prototype installations of this system have been operating
in the LCLS LINAC and tested at the Pohang Accelerator
Laboratory (PAL). Production systems are deployed at
the new PAL XFEL facility and at the SPEAR storage
ring at the Stanford Synchrotron Radiation Lightsource at
SLAC. This paper presents the design and commissioning
results of this system.

BACKGROUND

At LCLS, stripline BPMs measure the transverse
position of the electron bunch in the injector, Linac, and
transport lines. Each BPM is instrumented with a SLAC-
designed chassis that houses analog conditioning
electronics, a digitizer, and a CPU. After digitization, the
processed data is transmitted over a dedicated network to
a VME processor that calculates pulse-by-pulse beam
position. An online calibration scheme injects a tone into
the system between beam pulses in order to compensate
for gain variation and drift. This process occurs at the
beam rate, which is 120 Hz.

For recent projects, it became desirable to use
electronics in a smaller form factor while maintaining the
performance standard of the LCLS design.

SYSTEM DESIGN

A new system was developed, using the MicroTCA
(Micro Telecommunication Computing Architecture)
crate architecture. In this system, electronics for several
BPMs are housed within a single crate, with digitizers
located in the front of the crate and the analog
conditioning electronics in the rear. Digitized data is
transferred along the PCle backplane to the CPU for
processing.

The first version of this system [2] was tested in the
LCLS Linac and found to meet the performance
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requirements. Two of these BPMs have been deployed in
a SPEAR transport line.

Later, this design was further modified to achieve
improved position resolution for the PAL XFEL facility.
Revised electronics, including a different operating
frequency, larger bandwidth, and faster digitization rate,
provide position resolution improved by a factor of two.
Prototypes of this system were tested in the SLAC Linac
and at the PAL Injector Test Facility (ITF). Hardware
design details presented in this paper are for this
improved design.

Analog Front End

The analog front end (AFE) is used to reduce the signal
bandwidth and set the signal level before digitization. To
achieve the desired system resolution at low bunch
charge, it is important to minimize losses in the system.
This is most important in the signal cables and the AFE
components up to the first amplifier.

The SLAC-designed AFE contains two stages of
amplifiers and attenuators. The attenuators can be
adjusted from the control system to maintain reasonable
signal level when the bunch charge changes. The
bandpass filters select a processing frequency of 300
MHz with a bandwidth of 30 MHz. Figure 1 shows a
block diagram of a single input channel of the AFE.
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Figure 1: Analog Front End block diagram.
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As in the LCLS system, the AFE performs a self-
calibration process between beam pulses. A 300 MHz
tone is injected into a single stripline and the coupled
response is measured from the two adjacent striplines.
This is performed for both the horizontal and vertical
transverse planes. The calculated calibration ratios are
applied to the beam position calculation to compensate
for thermal drift and gain variation among channels.
Figure 2 shows a block diagram of the calibration
scheme.
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Figure 2: Calibration scheme.
Digitizer

To meet the resolution requirements, the analog-to-
digital converter (ADC) must provide sufficient effective
number of bits and signal-to-noise ratio. A commercial
off-the-shelf product, the Struck SIS8300, was selected.

It is important to select a digitization rate that centers
the signal well within the Nyquist zone. This reduces
unwanted signal leaking in from neighboring zones,
which decreases signal quality. This effect is also
improved by good filtering and selection of analog
bandwidth. In this system, the 300 MHz BPM signal is
undersampled at 250 MSPS, which centers the 30 MHz-
bandwidth aliased signal well in the first Nyquist zone.
Figure 3 shows the 300 MHz BPM signal, the 250 MSPS
digitization rate, the Nyquist zones, and the frequencies of
the aliased BPM signal.
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Figure 3: Nyquist zones and aliased signals.
Timing
The Micro Research Finland Oy (MRF) PMC Event

Receiver Card (EVR) is used to receive global timing data
and to provide hardware triggers for data acquisition.

Data Processing

The system uses embedded Linux with a real-time
patch to provide deterministic processing. New software
drivers were developed for the Struck digitizer and the
new AFE. These new software components were
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integrated into the existing BPM application. Figure 4
shows the BPM software architecture.
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Figure 4: BPM software architecture.

The BPM data acquisition and processing is event-
driven. At beam time, an external hardware trigger from
the EVR initiates the beam data acquisition. Once this is
complete, the software internally triggers a calibration
cycle. To reduce overhead, a DMA engine is used to
transfer data to the CPU. The software receives an
interrupt when the transfer is complete. Figure 5 shows
the process flow of two consecutive acquisition cycles.
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Figure 5: Data acquisition cycles.
The AFE firmware state machine executes the

calibration routine and initiates digitizer data acquisition.
The AFE has direct connections to the digitizer for real-
time data acquisition handshaking. It also provides a
QSPI interface to the digitizer for slow monitoring and
control. Figure 6 shows the connections and data flow
between the AFE and digitizer.
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Figure 6: AFE-Digitizer interface.
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INITIAL RESULTS

Prototypes of this system have been tested in the LCLS
Linac and at the PAL ITF [3].

Figures 7 and 8 show the measured beam position
resolution of LCLS Linac BPMs, including the
prototypes. The four red data points show the prototype
data. The two points on the left are early prototypes; the
two on the right are later prototypes with improved
resolution.
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Figure 7: LCLS Linac BPMs measured beam position
resolution at 160 pC bunch charge.
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Figure 8: LCLS Linac BPMs measured beam position
resolution at 20 pC bunch charge.

Figure 9 shows data taken at LCLS, plotting the
position resolution as a function of bunch charge, from 20
pC to 150 pC. Within the dynamic range of the system,
the position resolution should increase linearly as bunch
charge decreases, until it reaches its resolution limit. Units
BPM27201, BPM27301, BPM27401 are early system
prototypes. The other two are legacy LCLS BPMs. The
PRD limit shows the resolution requirement for the early
prototype.
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Figure 9: LCLS Linac BPMs dynamic range.

The BPMs at PAL ITF are on movers, which can be
used to compare measured position as a function of actual
position. The BPM system is expected to be linear within
+/- 1 mm from the BPM center in the X and Y transverse
planes. Figures 10 and 11 show X and Y data for a single
BPM.
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Figure 10: PAL ITF BPM measured versus actual X
position.

X 10'3 Motorg sweeping result
1 T T ¥
: i y:rD.89014?<+2.773erD5 :
OB st fs 5o e R R s
0.4F B
€ . : : :
< (1)) st I TEIT (RITRITEPRTRPRE PETPPERPA R i
g; il |
L 02f .............. R R .............
o ¢ ; :
[ie] H .
011 AR S RN, S N — ]
a8} . 1
. i g :
A5 E] 05 0 05 1
MoverG position (m) R TiN
Figure 11: PAL ITF BPM measured versus actual Y
position.
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FUTURE USE

The PAL XFEL facility will use this system for its 144
Stripline BPMs. This system will be commissioned with
beam in early 2016.

SPEAR is currently using two of these BPMs in its
transport line and plans to install more in early 2016.
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