
NEW DEVELOPMENTS ON EPICS DRIVERS, CLIENTS AND TOOLS AT

SESAME

I. Saleh, Y.S. Dabain, A. Ismail, SESAME, Allan, Jordan

Abstract
SESAME is a 2.5 GeV synchrotron light source under

construction in Allan, Jordan. The control system of

SESAME is based on EPICS and CSS.

Various developments in EPICS drivers, clients,

software tools and hardware have been done. This paper

will present some of the main achievements: new linux-

x86 EPICS drivers and soft IOCS developed for the

Micro-Research Finland event timing system replacing

the VME/VxWorks-based drivers; new EPICS drivers
and clients developed for the Basler GigE cameras; an

IOC deployment and management driver developed to

monitor the numerous virtual machines running the soft

IOCs, and to ease deployment of updates to these IOCs;

an automated EPICS checking tool developed to aid in

the review, validation and application of the in-house

rules for all record databases; a new EPICS record type

(mbbi2) developed to provide alarm features missing

from the multibit binary records found in the base

distribution of EPICS; a test of feasibility for replacing

serial terminal servers with low-cost computers.

INTRODUCTION

SESAME consists of a 22 MeV Microtron, an 800

MeV Booster Synchrotron and a 2.5 GeV Storage Ring.

Control System Implementation uses (EPICS) base

R3.14.12. Servers are implemented as EPICS Input/

output Controllers (IOCs). Clients are implemented using

a custom build of Control System Studio (CSS) based on

V.3.16. Siemens S7 PLC controllers are used for the

machine interlocks. An Allen Bradley PLC controller is

used for the Personal Safety System (PSS). VME

hardware is used for the timing system. Development and

administration platforms use Scientific Linux 6.4. A Git

version control is used to track development and
documentation. All clients, servers, and controllers are

connected to an isolated machine network. There are

twelve virtual servers reserved to run the IOCs, archive

system, alarm system and Git repositories.

 The control systems have been implemented for the

Microtron, Transfer Line 1 (TL1) and Booster. The

Booster’s control system is divided into seven
subsystems: vacuum, power, RF, diagnostics, cooling,

timing and Personal Safety System (PSS). Each control

subsystem consists of one or more clients, servers, and

controllers [1]. This paper will focus on the developments
on EPICS drivers, clients and tools at SESAME.

TIMING SYSTEM DRIVER

The timing system for the Booster consists of one event

generator VME-EVG230 and one event receiver VME-

EVR230, both of which are connected to the EPICS

network over TCP/IP. New Linux-x86 EPICS drivers

were developed for the timing modules from Micro-

Research Finland.

The VME-EVG230/VME-EVR230 are traditionally

controlled over the VME bus. Both modules can also be

programmed over the available Ethernet port however.
Building an EPICS driver for controlling the timing

modules over Ethernet instead of the VME bus has the

following benefits: Drops the dead weight: The VME crate, the

VME CPU card, the RTOS that runs on the

CPU card (along with any required licenses),

and the debug terminal that connects to the

CPU card are no longer needed. Lowers the cost of implementation: A direct

consequence of the point above. Confines the required development skills to
Linux/x86 platforms. Knowledge in VME-

bus, VxWorks, or any other RTOS/OS is not

required. Maintains coherency in the control

infrastructure. This point may be specific to

SESAME only since all of the IOC's at

SESAME run on Linux/x86 platforms.

The device layer uses the traditional asynchronous

processing model of EPICS support modules. The driver

layer uses the remote programming protocol of the timing
modules to control them. This protocol uses UDP. The

drivers add feedback, retransmissions, and timeouts to

create reliable communication over UDP.

Both drivers are LGPL'd and can be found as public

domain on Github [2]. The client of the timing system is

implemented in Control System Studio (CSS) and is

shown in (Fig. 1).

Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF033

Control System Upgrades

ISBN 978-3-95450-148-9

167 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Figure 1: CSS Timing OPI.

BASLER GIGE CAMERA DRIVER

New Linux/x86 EPICS driver was developed for the

GigE camera series from Basler. The device layer uses

the traditional asynchronous processing model of EPICS

support modules. The driver layer uses the Pylon libraries

from Basler to control the cameras over Ethernet. Once

configured, the driver starts a separate server thread for

each camera. Each server thread listens for commands
such as image capture or gain and exposure settings. A set

of mutexes and signals are used to synchronize operation

between the various threads.

BASLER GIGE CAMERA CLIENT
To connect to the Basler GigE camera driver, a custom

client was built at SESAME utilizing the EPICS channel

access libraries. The client is responsible for providing a

graphical user interface to render the camera's video

stream possibly doing some image post-processing like

colour mapping and to control the camera image settings.

 The camera client uses the EPICS channel access

libraries to monitor and control the various records
provided by the driver. A waveform record contains the

grayscale image data and various analog input/output

records provide access to camera's gain, exposure, ROI

and trigger source. Once the camera client is started it

connects to the driver and enables the camera. The

camera is usually disabled if unused to save network

bandwidth. Once the camera is enabled, the waveform

record containing the grayscale image starts updating as

the camera is triggered. On each update, a call-back is

called in the client to copy the image data to one of two

buffers used to render the image. One of the buffers is

being read from while the other is written to. And once
the image buffer is completely written to and ready, a

switch is done so that the next render uses the new image

data. The double-buffering is used so that no tearing

happens in the rendering of the image.

 The client is written in C using OpenGL, SDL,
AntTweakBar and of course EPICS channel access
libraries.

OpenGL is an API to do high performance 2D and 3D
rendering on computers. In the client, it is used to render
the image frames maintaining a high framerate while
consuming low CPU cycles and RAM memory. SDL is a

cross-platform library used to provide access to keyboard,
mouse, and windowing system and graphics hardware via
OpenGL. AntTweakBar is a library that works with SDL
and OpenGL to provide a light graphical user interface to
interactively tweak parameters and settings in an
application. It is used to control and show the camera
image settings like region of interest, framerate and
trigger source.

Both driver and client are LGPL'd and can be found as
public domain on Github [3]. (Fig. 2) shows the camera
client presents colour mapping option.

Figure 2: Camera Client.

IOC MANAGER
The control infrastructure at SESAME uses 12 virtual

machines to run the different IOC's and 8 physical

machines to run the clients and for development purposes.

The IOC manager is a Linux/x86 EPICS driver
developed for the purpose of managing all the machines

that are part of the control infrastructure at SESAME.

Specifically, the IOC manager provides the following

services: Hostname and user of the IOC Date, time, and uptime of the IOC Drive, memory, and CPU utilization Control over which IOC's to run Enabling/disabling of the IOC's Build system
The date/time information give diagnostics on whether or

not the IOC is synchronized with the NTP server. The

drive, memory, and CPU utilization are indicators on the

health of each IOC. They are connected to the alarm

handler at SESAME. Control over which IOC's to run

enables us to run different IOC's on different machines,

and lets us know which IOC's are running where.

Enabling/disabling the IOC's allow us to manually

shutdown, turn on, or reset the IOC's. Finally, the build

system of the manager synchronizes the IOC with the

main Git repository, builds the source, and restarts the

IOC's.
Each IOC is run inside a separate terminal multiplexer

session. This allows us to a remotely attach/detach to a

session whenever we need to access the IOC itself.

MOPGF033 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

168C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Upgrades

The driver layer uses traditional synchronous EPICS

processing model of EPICS support modules. The device

layer uses standard POSIX API to access machine

information. Bash scripts are used to synchronize with the

main Git repository. The client of the IOC manager is
implemented in CSS and is shown in (Fig. 3).

Figure 3: IOC Manager Client.

DB-CHECK TOOL

The db-check tool is a command line tool built at
SESAME that automatically analyzes, validates and aids
in applying continually evolving in-house rules for EPICS
records databases. It was primarily built to help in
reviewing, unifying and maintaining the numerous EPICS
databases present.

Features provided by the db-check tool include: listing
all records by name, or by type; querying a record to
show all of its details and Process Variables (PVs);
producing reports of records usage in each system, and
what fields are set in those records; producing up-to-date
alarm and archiver XML configuration files; and
checking some in-house rules that PVs should follow.

Examples of the PV rules applied include: always
having a DESC field present in all records: always having
a ZNAM, ONAM, ZSV and OSV for BO records; always
having the name of PVs to start with a one of a predefined
set of prefixes (eg. is, get, set, reset, enable or disable)..

The way the db-check works is by parsing the DB and
DBD files using a PEG grammar. The tool is built in D
programming language and using pegged library for the
parser [4]. The D programming language was chosen
because it provides modelling power, efficiency and high
performance in a coherent set of well-thought features,
and because it interfaces easily and natively to the C
programming language. An important feature that
specifically helped in this project is compile-time function
evaluation (CTFE) and mixins. This feature is used in
pegged to build the parser using the grammar definition at
compile-time instead of depending on a separate build
step. And it reduced the compile-run-debug cycle time.

MBBI2 RECORD

Mbbi2 is a new record type developed at SESAME to
overcome some limitations present in the official
mbbiDirect record type in regards to alarms. An mbbi2
record is almost exactly the same as an mbbiDirect record
except for its ability to specify alarm states for individual
bits.

Frequently, devices provide read access to status
registers where different bits mean different things. Some
of those bits hold on/off status, others hold warnings and
others hold interlock status. Using an mbbiDirect record
to model this in EPICS creates a problem for alarm
handling as value alarms are not supported. To support
this without introducing a new record type will require
using multiple CALC fields. The way mbbi2 resolves this
is by setting an alarm severity on zero and one for each
bit. The alarm severity for the record is equal to the
highest alarm severity of its bits.

The main problem of introducing a new record type is
the maintenance requirements of integrating it with the
different drivers and their build systems.

TERMINAL SERVER

The terminal server is an experiment to provide simple
serial to Ethernet converters using low cost computers.
The computers have multiple serial ports that are mapped
using the accompanying software to TCP ports available
over an Ethernet network. The software was built to run
primarily under minimal x86 or x64 Linux systems using
libevent2 for asynchronous non-blocking communication.
The software, once started, reads a configuration file and
accordingly connects to a serial device on the specified
baud rate and starts listening for clients on a TCP port.
Once a client connects, data coming from the serial
device is forwarded to the TCP connection and vice versa.
Some simple statistics are printed periodically to the
console for simple diagnostics.

Tests for the system showed that it was working well,
but it has not been used in a production settings as of yet.

CONCLUSION

The control system of SESAME is based on EPICS and
CSS. Development of new drivers, clients and tools at
SESAME is important to make the control systems up to
date and more consistent. Standards are used for both
EPICS databases and CSS client OPIs.

REFERENCES

[1] A. Ismail, I. Saleh, Y. Dabain,, “CLIENTS

DEVELOPMENT OF SESAME'S CONTROL

SYSTEM BASED ON CSS”, Proceedings of
PCaPAC2014, Karlsruhe, Germany, 2014.

[2] https://github.com/aismail2

[3] https://github.com/sesamecs

[4] https://github.com/PhilippeSigaud/Pegged

Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF033

Control System Upgrades

ISBN 978-3-95450-148-9

169 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

