
REAL-TIME ETHERCAT DRIVER FOR EPICS AND EMBEDDED LINUX
AT PAUL SCHERRER INSTITUTE (PSI)

Dragutin Maier-Manojlovic, Paul Scherrer Institute (PSI), Villigen, Switzerland

Abstract
EtherCAT [1] bus and interface are widely used for

external module and device control in accelerator
environments at PSI, ranging from undulator
communication, over basic I/O control to Machine
Protection System for the new SwissFEL accelerator. A
new combined EPICS/Linux driver has been developed at
PSI, to allow for simple and mostly automatic setup of
various EtherCAT configurations.

The new driver is capable of automatic scanning of the
existing device and module layout, followed by self-
configuration and finally autonomous operation of the
EtherCAT bus real-time loop. If additional configuration
is needed, the driver offers both user- and kernel-space
APIs, as well as the command line interface for fast
configuration or reading/writing the module entries.

The EtherCAT modules and their data objects (entries)
are completely exposed by the driver, with each entry
corresponding to a virtual file in the Linux procfs file
system. This way, any user application can read or write
the EtherCAT entries in a simple manner, even without
using any of the supplied APIs. Finally, the driver offers
EPICS [2] interface with automatic template generation
from the scanned EtherCAT configuration. In this paper
we describe the structure and techniques used to create
the EtherCAT software support package at PSI.

INTRODUCTION
To support external device data acquisition and

equipment control both for existing research facilities,
such as Swiss Light Source (SLS), and for facilities being
built at the time this text was written, like Swiss Free
Electron Laser (SwissFEL) [3], an EtherCAT software
interface was needed at PSI. Unfortunately, none of the
existing commercial and non-commercial solutions we
have reviewed and tested was able to cover and satisfy all
of the requirements for the EtherCAT support.

General requirements were divided in two broad
categories – the first was the full support for EPICS
control system and the complete range of standard EPICS
record types currently available, with the possibility for
flexible addressing of EtherCAT modules and entries. The
second requirement was to have a system that can provide
the EtherCAT interface for common applications, both
applications running locally, normally on the Ioxos IFC
1210 VME Board (equipped with the PowerPC P2020
CPU) and remotely, on a standard desktop PC or mobile
device running any operating system capable of
supporting network-based file systems, such as Linux,
UNIX, Windows, MacOS, FreeBSD and others.

CONCEPTS
Providing support for such a wide range of applications

in a single package presented a problem, since not every
requirement or possible scenario for usage could have
been satisfied with a single piece of software.

EPICS control system support requires its own type of
dedicated device support driver. Unlike its kernel
counterparts, EPICS driver has to run in Linux userspace,
since EPICS system itself is a userspace application.
Aside from EPICS, the system has to support other types
of applications, both local and remote.

Local applications can be both userspace and
kernelspace applications, which in turns mean at least two
separate local APIs had to be created. Remote
applications, on the other hand needed a generalized way
to access EtherCAT data regardless of the operating
system used.

EtherCAT Data Addressing
To describe an address of a given EtherCAT data entry,

several variables have to be included: EtherCAT Master
number (since there can be multiple masters running on
the same host), Domain Nr. (domain is an arbitrary, user-
defined collections of PDO (Process Data Object) entries
sharing the same domain buffer memory and TCP
exchange frame rate), Slave Nr. (Slave is another name
for an EtherCAT Module), Synchronization Manager Nr.
(SyncManager or SMs group objects by their exchange
direction (input/output) or other criteria), Process Data
Object Nr. (PDOs group entries by some arbitrary
purpose defined by the Module producer) or Process Data
Object Entries (PDO Entries or PDOE hold the actual
data).

The user should be able to easily describe which data
entry (or entries) should be addressed, in a consistent yet
simple manner. To solve this problem, we have devised a
new addressing schema for EtherCAT data:

Figure 1: New schema for EtherCAT data addressing.

Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF027

Control System Upgrades

ISBN 978-3-95450-148-9

153 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Master (ma) and domain (db) can be omitted when a=0
or b=0, i.e. for the default master and domain. Similarly,
the PDO entry (el), PDO (pk) or SyncManager (smj) can
be omitted as well (in that order), when the user wants to
address multiple entries included in a larger parent
container, instead of a single entry. For example,
s1.sm4.p0.e1 would be the address of the “entry 1 of PDO
0 of SyncManager 4 of slave 1”, whereas the string
s1.sm4 would mean “all entries contained in all PDOs of
SyncManager 4 of slave 1”.

To increase flexibility, we have extended the addressing
to include various modifiers, hence not rigidly connecting
an EPICS record to a single entry of the same type. The
possible modifiers or addressing modes (as of v2.0.6) are:

 [.o<offset>] - forced offset (in bytes), allows shifting
of the starting address of the PDO entry in buffer

 [.b<bitnr>] – forced bit extraction, allows extraction
of single bits from any larger PDO entry data types

 [.r<domregnr>] – domain register addressing,
replaces address modifiers s, sm, p and e, using
relative entry addressing inside a domain instead

 [.lr<entryrelnr>] – local register addressing, replaces
any (group) of the address modifiers s, sm and p,
allowing for local relative addressing of all entries
inside a slave, inside a SyncManager, or inside a
PDO regardless of their actual parent container or
containers

 [.l<length>] – length modifier, in bytes. Used
primarily to define the length of stringin/stringout
EPICS records

 [t<type>] or [t=<type>] provides means for forced
typecasting or type override, changing the default
type of the data entry when applied. Many types are
provided, from int/uint (8-, 16-, 32-bits), float,
double, BCD, etc.

It is worth noting that the addressing modes or

modifiers listed above can be freely mixed as needed –
for example, the address s1.sm4.p0.e1.b4 would mean
“extract the bit 4 of the 32-bit entry s1.sm4.p0.e1”, and
the address s1.sm4.p0.e1.o2.b4 would mean “extract the
bit 4 of the 32-bit entry s1.sm4.p0.e1, but shifted by 2
bytes (.o2)”, which would effectively extract the bit 20
(2*8+4=20). Similarly, the address r45.o2 with the
modifier t=float would mean “domain register 45, shifted
by 2 bytes, typecasted to float”.

EPICS SUPPORT
Since PSI almost exclusively uses EPICS control

system for its accelerators, integrating EPICS support was
a top priority. For the system employing EtherCAT
components, the EPICS Core is running on the Ioxos IFC
1210 Boards [4], equipped with two separate Ethernet
interfaces, a PowerPC P2020 CPU and the VME Bus
backplane. The operating system installed is a Linux with
the appropriate PREMPT-RT patch.

Since EPICS has its own interface for device drivers, a
special EPICS userspace driver had to be developed,
using high priority real-time threads for the control loop.
Without the real-time capabilities provided by the
PREMPT-RT Linux, timing and execution of the control
loop would not be reliable and hence not real-time
capable.

For the EPICS support, the timing control loop is
maintained by the EPICS userspace device driver. EPICS
records are registering the entries they are ”interested in”
at the IOC boot time, and the driver then carries the
exchange between the records and the EtherCAT control
loop.

Additionally, EPICS support has to provide both
“normal” reading and writing, not synchronized with the
EtherCAT control loop, and I/O Interrupt mode, to allow
each Ethernet packet to trigger an interrupt, at which
point the new values can be read and written to the buffer.
This was accomplished with double-buffering technique
between EPICS and the driver.

Another problem to solve was the fact that EtherCAT
modules are not always required to accept the write
values – a write request may, for example, fail for a
number of reasons – and that means that the Ethernet TCP
packet on a return trip may contain write values which
differ from the content of the write buffer.

This means that not only the refreshed read values, but
also the write values has to be transferred back to the
write buffer at the end of every cycle. Yet, the newly
received write values, unlike new read values, cannot be
simply copied over the old values in the buffer, since that
would effectively overwrite the new write request values
which were already accepted since the last cycle. To solve
this, a multithreaded double-buffering with the write-
mask for write requests was implemented (see Figure 2).

Figure 2: EPICS driver structure.

All EPICS records use a single driver type (DTYP)

called ecat2. Scan rates for records can be set to any valid
EPICS scan rate, including Passive and I/O Intr.

All of the extended addressing modes and modifiers,
including typecasting, can be used in EPICS as well.
Almost all combinations are allowed - even in EPICS,
with its rigidly defined record types, it is possible to
achieve high level of flexibility.

MOPGF027 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

154C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Upgrades

For example, it is possible to extract a single bit from a
mbbi record without additional calc records, or to have a
complete bit field extracted from a record of any length.
Type override and other modifiers can be used for all
record types, including array-type records (aai/aao).
Length modifier (.l<length>) is used to define the length
of the string for string-type recods (stringin/stringout).

Additionally, several special types of records are
provided. These records signify status of the EtherCAT
Master, aggregate status of the slaves (modules),
EtherCAT network link status and status of each slave
(module) – preoperational, operational, error, etc.

GENERAL SUPPORT
To support the local and remote applications wishing to

connect to and use the EtherCAT hardware, the second
part of the driver package was created. We have
developed three different subsystems to allow application
developers a highly flexible way to access the entries and
other data:

 Kernelspace API
 Userspace API
 Procfs-based tree(s)

All of the above are included in the Linux-based PSI
EtherCAT kernel device driver and supporting tools and
libraries. The driver provides support automatic scanning
of the EtherCAT bus and automatic configuring of
domains and found entries, and manual configuration for
some or all modules as well.

Additionally, the driver automatically constructs and
maintains procfs trees throughout its operation, and takes
care of triple-buffering and write-masking process needed
for data exchange with the client applications. Description
of the each of the access modes is presented below.

Kernelspace API
Kernelspace API (kAPI, Figure 3) is a set of functions

providing the easy access to driver control loop
parameters and EtherCAT data entries.

The driver provides an internal real-time control loop
for buffering and exchange of TCP packets over Ethernet,
Timing of the control loop is based on the host high
resolution timers, but can be driven by an external source
as well, such as a timing system input.

Figure 3: PSI EtherCAT driver structure.

Multiple kernelspace applications and/or drivers can
use the API, however, the RT-priorities of various
application kernel threads has to be set carefully, in order
to allow both the driver and the rest of the kernel to run
properly.

Userspace API
Userspace API (uAPI, Figure 3) is a set of functions

providing (almost) the same functionality found in the
kAPI. The functions library can be used statically or
dynamically with userspace applications as needed.

The only difference is that there is no possibility for
external timing input for the control loop (since the
control loop is located in the kernelspace part of the
driver), only timing triggering for data acquisition (or
delivery) can be used.

Procfs rees
To allow local and remote applications to access the

EtherCAT data, but without the need for an API or a
dedicated remote server and client, we have developed the
concept of procfs trees. Procfs trees are a series of
directories and “files” constructed on-the-fly by the
drivers in the Linux host proc file system.

Each directory represents some kind of a parent
container, such as a slave, a syncmanager, a PDO, a
domain or a master (Figure 4). Each file in these
directories represents either a direct representation of a
EtherCAT PDO entry, or a utility file representing the data
about the system or about the containers present.

 Figure 4: procfs tree general structure.

There is also a special cmd entry provided in the procfs
tree, allowing a CLI or application to interactively talk to
the driver, sending commands (for example, add entry,

T

Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF027

Control System Upgrades

ISBN 978-3-95450-148-9

155 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

add PDO, add slave entries, list data, etc.). Also, entry
data can be read or changed using the CLI as well.

The complete procfs tree directory/file structure is
updated automatically each time something changes in the
system – during bus scans, when an entry is added to a
domain and similar actions.

The files in the structure can be read from or written to
– this allows any application programmer to easily access
the EtherCAT data without having to meddle in the API
programming at all.

EXTENSIONS AND UTILITIES
The PSI EtherCAT support package offers several

extensions and tools. The most important ones are
described below.

Slave-to-Slave ommunication
It is often the case that the data on the EtherCAT bus

has to be transferred from one EtherCAT device or
module to another, preferably in real-time. For this kind
of communication, two different directions of transfer can
be observed, upstream and downstream.

Upstream slave-to-slave communication is transfer of
data from a module further away on the EtherCAT bus
from the master to a module closer to the master.
Downstream communication is the transfer from a closer
module to one further “down the stream” from the master.
The stream in this case represents the path an EtherCAT
TCP packet is travelling, and its direction remains
constant as long as there are no physical changes in the
bus configuration and modules present.

From real time point of view, this communication is
highly deterministic, yet not identical – downstream
communication (send on one module, receive on another)
can, theoretically, be done in the same bus cycle, hence
costing exactly zero bus cycles to execute. Upstream
communication, due to the way TCP packets are handled
by the EtherCAT, will take exactly one bus cycle to
complete.

We have decided to implement the slave-to-slave
communication (sts) with constant cost of completion, in
this case, exactly one bus cycle for both upstream and
downstream communication requests.

In EPICS, sts-communication transaction requests can
be inserted as follows:

ecat2sts <source> <destination>

For example:
ecat2sts r8 r0
ecat2sts r2.b0 r0.b6
ecat2sts s2.sm0.p1.e0 s1.sm0.p1.e0
ecat2sts s3.sm3.p0.e10.b3 s4.sm2.p1.e0.b7

As can be seen in examples above, any valid addressing

mode and/or modifier can be used for source and
destination. API access is done by calling a function to

register a transaction request, but the addressing remains
the same.

Support for Programmable Modules
The PSI EtherCAT drivers and utilities also support

setting up and live programming of programmable
EtherCAT modules and devices, such as, for example,
EtherCAT network bridges (EL6692, EL6695), motor
controllers, and so on.

From EPICS, any module can be programmed by using
ecat2cfgslave set of commands, for example:

ecat2cfgslave sm <arguments…> - configures one Sync

Manager for the given slave.
ecat2cfgslave sm_clear_pdos <arguments…> - clears

(i.e. deletes) all PDOs for a given Sync Manager (SM)
ecat2cfgslave sm_add_pdo <arguments…> - adds a

PDO with index pdoindex to a Sync Manager.
ecat2cfgslave pdo_clear_entries <arguments…> -

clears (i.e. deletes) all PDO entries associated with the
given PDO.

ecat2cfgslave pdo_add_entry <arguments…> - creates
a new PDO entry and associates it with the given PDO

Network bridges even have their own, simplified

commands for programming entries:

ecat2cfgEL6692 <netbridge_nr> in/out <numberofbits>

CONCLUSION
In this paper, we have presented the PSI EtherCAT

software support package and described its components.
The system is already successfully used at PSI in the last
several months.

As is usual with such systems, it is to be expected that
changes will be made to this package in the future to
accommodate needs and new requirements of expanding
number of users of the system, the existing features will
be extended and streamlined and the new features and
components will be added.

REFERENCES
[1] Beckhoff.de website: http://www.beckhoff.de/
[2] EPICS, Experimental Physics and Industrial Control

System, website: http://www.aps.anl.gov/epics/
[3] PSI.ch website: http://www.psi.ch/media/swissfel
[4] Ioxos Technologies, IFC 1210 – P2020 Intelligent

FPGA Controller, website: http://www.ioxos.ch/

C

MOPGF027 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

156C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Upgrades

