
TESTING FRAMEWORK FOR THE LHC BEAM-BASED FEEDBACK
SYSTEM

S. Jackson, D. Alves, L. Di Giulio, K. Fuchsberger, B. Kolad, J. Pedersen
CERN, Geneva, Switzerland

Abstract
During the first Large Hadron Collider (LHC) [1] shut-

down period, software for the LHC Beam-based
Feedback Controller (BFC) and accompanying Service
Unit (BFSU) [2] was migrated to new 64-bit multi-core
hardware and to a new version of CERN's FESA [3] real-
time framework. This coincided with the transfer of
responsibility to a new software team, charged with
readying the systems for beam in 2015 as well as
maintaining and improving the code-base in the future.

In order to facilitate the comprehension of the system's
90'000+ existing lines of code, a new testing framework
was developed which would not only serve to define the
system's functional specification, but also provide
acceptance tests for future releases. This paper presents
how the BFC and BFSU systems were decoupled from
each other as well as from the LHC plant's measurement
and actuator systems, thus allowing simulation-data
driven instances to be deployed in a test environment. It
also describes the resulting Java-based Domain-Specific
Language (DSL) which allows the formation of
repeatable acceptance tests.

INTRODUCTION
LHC operators rely on a feedback system in order to

stabilise/correct and adjust the beams’ closed-orbit,
betatron tune, energy and radial loop [4] during the
various stages of the operational cycle from filling to flat-
top. The system is triggered at up to 25Hz by input
signals from over 1’000 Beam Position Monitors (BPM),
along with 6 tune measurements from Base-Band Q
(BBQ) [5] measurement systems. The BFC sanitises this
data, before calculating the necessary currents to send to
various LHC steering dipoles and quadrupoles - The
effects of which should be observed in the next iteration
of the feedback loop (via the BFSU 1Hz instrumentation
layer).

When a new team took charge of the existing codebase,
it was apparent that many changes would be required to
port the code to new 64 bit hardware, and to migrate to
the latest FESA framework. This meant that testing the
new software before the LHC start-up would be
imperative. Testing using real signals from over 1’500
I/O devices round the LHC would not only be difficult
during the machine’s shutdown, but would be impossible
when the LHC became operational. Consequently it was
decided to create a testing framework which could
emulate the BFC’s input signals, the effect of which could
then be observed via the BFSU at 1Hz. Test cases would
then be written, for asserting that the BFC and BFSU
were reacting correctly to the conditions defined by the

test. It was also acknowledged that test developers may
not be software experts, and may therefore be
uncomfortable learning how to use a potentially complex
API. In this context, a descriptive DSL would abstract
the testing framework to be easily used by test creators.

Realising the framework, would not only require new
testing code, but would entail many changes to the BFC
and BFSU themselves, in order to allow instances of the
software to be deployed outside their specialised
operational hardware. Also, spoofing the BFC’s input
data would require relaxing of the BFC’s data integrity
checking mechanisms without compromising security in
the operational system.

ADAPTING TO LIFE IN THE LAB
During 2014, the BFC and BFSU were ported to the

new 64 bit architecture / FESA3 framework and the team
had a release candidate ready for testing. Before any
testing framework could be developed however, several
changes to the software would be required to allow the
software to be tested.

Figure 1: Software adapted so any number of BFC /
BFSU pairs can be started, even on the same machine.

The new operational feedback system comprises of 2
multi-core Linux based (with Red Hat’s MRG* kernel
extension) HP Gen8 Blade machines. In order to assure
real-time performance, the BFC is isolated from the LHC
control system, with the BFSU acting as a client-facing
data / setting proxy. A 2nd Ethernet link is used to
transfer (~130Mb / sec) data between the BFC and BFSU

* Messaging Real-time Grid.

MOPGF024 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

140C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Upgrades

during operational conditions. Reproducing this exotic
hardware configuration would be both costly and un-
necessary for our testing framework, so the code was
modified to allow any BFC instance to be connected to
any BFSU on any IP address including loopback (i.e. both
on the same machine). Deploying in loopback proved
problematic with the original software design, as the BFC
and BFSU were both bound to similar network ports, so
the 36 existing hard-coded port numbers where converted
into offsets with respect to a single configurable base-
port. This way, any number of BFC / BFSU unit pairs
could be started on the same machine without having any
port clashes (see Fig. 1).

The BFC design is different to most of the real-time
software developed for the LHC due to its tight real-time
constraints. Consequently, the system was compiled and
linked on the operational hardware itself, using machine
optimized compilations of CERN’s Root libraries. This
was not ideal for compiling and testing via the new
framework, so the system build was adapted to use the
standard SLC6 environment. It was assumed that with the
latest 64 bit hardware increasing CPU power from 4 core
to 24 core machines, real-time constraints would not be
compromised.

TEST SYSTEM OVERVIEW
While testing a system would traditionally start with

writing unit tests for individual components and then
building integration and acceptance tests on top of these
fundamentals, the approach taken here was a bit different.
Starting with unit tests was problematic, because classes
on the BFC have a high inter-dependency. Our main goal
was to bring the system (focussing mainly on the BFC)
into a test harness in order to observe and verify the
global behaviour while gaining confidence for future
changes. To accomplish this, it became clear that the
BFC’s I/O channels (UDP packets, described later) could
already provide us with a clean way to inject our tests.
This choice has the following advantages:

 Minimal changes required in the BFC.
 UDP is language independent; we were free to

choose any language for the test system.
Given the option of choosing any language, we decided to
use Java as the implementation language for the testing
framework, for the following reasons:

 Java is widely used in the LHC environment, so
more people will be able to easily use and extend the
framework providing more tests.

 Interactions with other parts of the control system
(e.g. settings management) are natively possible in
Java. This allowed us to easily write tests involving
operational settings and/or even verify consistency of
such settings with the framework.

 It allowed us to gain first experience in the behaviour
of Java in a real-time environment.

An important aspect taken into account in the design of
the testing framework was the fact that tests of different

layers would be required. We identified the following
types of tests:

 FESA mechanics: e.g. asserting that setting a value
in one FESA property has the desired effect in
another. Despite the fact that this functionality is
only for interfacing with the control system, these
tests turned out to be the most frequently required,
due to the complexity of the BFSU’s API.

 Communication: e.g. send some predefined values
for an orbit and check if the values are correctly
processed through the layers.

 Control loop behaviour: e.g. send a constant orbit
verifying the resulting corrections. From an
operational viewpoint these are the most interesting
tests, as they highlight instabilities and allow error
predictions.

These different abstraction layers are reflected in the
testing framework’s DSL as described later.

PLANT VIRTUALISATION
Without input signals the feedback system does nothing
apart from reporting timeouts. To operate correctly, the
BFC needs the following (see Fig. 2):

 BPM packets: Sent at 25Hz from the BPM systems,
they contain position measurements (~500 values per
beam and plane).

 BBQ packets: Sent between 1 and 100Hz from 3
BBQ systems, they contain the measurement values
for the tunes (1 value per beam and plane).

 Orbit trigger: Hardware trigger at 25Hz, which
starts orbit averaging in the BPMs, and also data
collection in the BFC. On reception of this trigger,
the BFC opens an acceptance window (~10 ms), in
which arriving packets are processed for one
feedback iteration.

In order to test the system, the testing framework must
virtualise these BPM, BBQ and Orbit Trigger input
signals as well as capture the output signals (to avoid
sending to the correction magnets). Luckily, most of the
input signals already arrive via UDP packets, so spoofing
the data was feasible. The only exception in the new
feedback system is the Orbit Trigger which arrives via a
cable from the Beam Synchronous Timing (BST) [6]. To
facilitate the spoofing of this input signal, code was
modified in the BFC, and the trigger’s interrupt was
handled in a dedicated thread which delivered the trigger
into the BFC’s main loop via a UDP packet. Although
this added a small jitter to the trigger, the additional
overhead of passing through a local UDP port was
deemed acceptable.

All the operational I/O systems communicating with
the BFC are written in C++, and the UDP packets’
content are declared as C structs. Our chosen language
for the test however was Java, so these structs had to be
emulated by Java classes which could be de-serialised /
serialised to / from a stream of bytes which mimicked
exactly the structs from the real systems. Also, the
contents of our packets had to adhere to the strict data

Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF024

Control System Upgrades

ISBN 978-3-95450-148-9

141 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

quality rules specified by the BFC, including information
used for diagnostics. Even if we were not interested in
testing things such as temperature from our framework,
this diagnostics data must be within sane limits.

Figure 2: Framework must virtualise LHC I/O signals and
decouple from private Ethernet dependency.

TEST FRAMEWORK ARCHITECTURE
Figure 3 shows the core components of the testing
framework and their different layers as follows:

 The main work and internal logic is done in the
service layer. It combines data from the lower layers
and provides convenient methods for the upper
layers for dedicated tasks (e.g. ‘create an orbit with
certain properties’).

 The lowest backend layer contains various adaption /
delegation classes for subscribing to FESA devices,
creating simulated orbits, reading settings, creating
UDP packets, etc.

 From a functional perspective, the service layer
would be sufficient to write the tests. However, to
make tests more expressive and readable by non-
programmers, we followed domain driven principles
and put a layer of a Java-embedded Domain Specific
Language (eDSL) on top. It was implemented as a
fluent Java API, using method chaining as the main
syntax concept. The starting points for all the fluent
clauses are grouped by topic in classes (e.g.
OrbitCreationSupport for clauses which create
different orbit types).

Figure 3: Overview of the testing framework architecture.

As a framework to execute our tests, we chose the
JUnit framework, which simplified test creation and
report generation as well as using well established
matching libraries (hamcrest, assertj) to formulate
assertions. The framework provides an abstract class,
AbstractFeedbackTest, which can be used as a base class
for all tests. It is preconfigured with instances of each
support class and provides delegation methods to them, so
that inheriting tests can formulate fluent clauses without
instantiating any additional objects.

THE DOMAIN SPECIFIC LANGUAGE
To get a general impression of the different features of

the testing framework and the eDSL in particular, we will
show some selected examples. Since the execution of the
tests is based on JUnit, the skeleton of a test will always
look something like this:

Most tests involve communicating with the BFC, so the

language provides the means to construct packets of a
particular type and send them:

A burst represents a set of packets which simulate the
state of the LHC at a moment in time (i.e. one orbit). A
more meaningful test would be to construct an orbit with
all zero values and send it (this time using defaults for
duration / period, spawning the sending in the
background, checking the publishing from the BFSU and
then awaiting the termination of the sending):

Creation of other orbits is also supported. e.g. Constant
single outliers or (artificial) flat orbits with constant
values:

la
ng

se

rv
ic

e
ba

ck
en

d

AbstractFeedbackTest

FESA receivers/converters, UDP senders,
Configuration parsers, JMadDelegate,

LsaDelegate

ElementService, OrbitCreationService,
PacketCreationService, BatchSendingService,

CollectingService

OrbitCreationSupport, BatchSendingSupport,
PacketCreationSupport, CollectingSupport

BFC/BFSU (System under Test) LSA[7], JMad[8]

MOPGF024 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

142C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Upgrades

Finally, the language also provides a convenient way to
retrieve and manipulate FESA properties and fields.

This last feature turned out to be very useful for other
applications and will be extracted in the near future to a
dedicated package to facilitate its re-use by others.

RESULTS
Within minutes of first beam, the new feedback system

was supplying operators with orbit data, as well as
successfully applying orbit and tune feedback. When
operators tried to load different reference optics however,
the new software didn’t behave as expected. Despite
testing most of the basic system functionality, the
framework didn’t have a dedicated acceptance test for
reference optic changes, but the team were able to quickly
reproduce the phenomenon in the testbed, solving the
problem without further disturbing operations. Another
problem not covered by the tests involved a rogue BPM
system sending corrupted timestamps which caused
the Software Interlock System[9] to dump the beam
several times. Again, the team reproduced the
phenomenon in the testbed, and quickly supplied a
patch to fix the problem operationally.

A weakness of the framework was highlighted during
the first few months of operation, when problems with the
delivery of timing events occurred during optics reference
changes. In this case, the testbed was unable to reproduce
the problem unless an accompanying test framework for
the timing event delivery was also available. In the long
term, it is hoped that such a framework will become
available, but in order to solve this issue, the operational
system had to be used to diagnose and solve this problem.

FUTURE PLANS AND OUTLOOK
The acceptance test coverage is still relatively low, so

the team plans to continue developing new tests for
existing functionality as time allows. However, any new
feature added to the BFC or the BFSU must have
accompanying acceptance tests if possible.

During the next 12 months, the team plan to implement
a new streamlined BFSU API which will use new features
now offered by the latest FESA3 framework. The
delivery of this new API will be progressive, and released
in parallel with the existing API. In order to assure that
the new API is functionally equivalent, the plan is to
duplicate the existing tests and adapt them to the new
API. A third set of tests will then assert that the results of
the tests with the old API and new API are equal.

Presently, the output of the BFC in test conditions is
muted. There is an ambitious plan to capture the BFC
output (UDP packets destined for the corrector magnets)
within the acceptance test, and combine it with the input
signals for the next iteration. With this in place, we

effectively close the feedback loop within the testing
framework.

There are also plans to use the experience from this
testing framework to test other systems. Several systems
such as the BBQ tune measurement system and the LHC
beam-loss monitoring system will also require porting to
the new FESA3 framework, and will therefore benefit
from offline testing. Whilst the scope of tests on these
systems will be less than for the feedback system (they
rely on dedicated hardware), basic I/O tests can still be
performed. In the long term, these systems could also
benefit from more extensive acceptance tests, if like the
feedback system, the systems are re-written to
accommodate simulated data in place of acquisition cards
for example.

CONCLUSION
The testing framework enabled the new software team

to understand the code they inherited, and provided
functional documentation in the form of test assertions.
The tests highlighted many bugs which would probably
have gone un-detected until the LHC start-up; bugs which
would have hindered the operators during a very critical
period. Importantly, the testbed has also given the new
software team the confidence to roll out several changes
to the software during 2015, citing the testbed assertions
as confirmation that the new release should be acceptable.
Of course the testbed will never guarantee that a new
release is bug-free, but the confidence is certainly
increased.

The resulting framework has proved that one of the
most complex pieces of software in the LHC can be tested
offline, and should serve as an inspiration to develop
other test frameworks for other critical systems at CERN.

ACKNOWLEDGMENT
The team would like to thank Jörg Wenninger from the

Operations group, Vito Baggiolini from the Controls
group and Markus Zerlauth from the Machine Protection
and Electrical Integrity Group for their considerable
contribution of time and advice during the project.

REFERENCES
[1] Lyndon Evans and Philip Bryant, “LHC machine”,

JINST, 3 (2008), p. S08001.
[2] L. K. Jensen et al, “Software Architecture for the

LHC Beam - Based Feedback System at CERN”,
ICALEPCS’13.

[3] M. Arruat et al., "Front-End Software Architecture",
ICALEPCS’07.

[4] R. Steinhagen “Real-Time Beam Control at the
LHC”, PAC’11.

[5] M. Gasior et al., "Advancements in the Base-Band-
Tune and Chromaticity Instrumentation and
Diagnostics Systems during LHC’s First Year of
Operation", DIPAC’11.

Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF024

Control System Upgrades

ISBN 978-3-95450-148-9

143 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

[6] D. Domínguez et al., "An FPGA Based
Multiprocessing CPU for Beam Synchronous Timing
in CERN’s SPS and LHC", ICALEPCS’03.

[7] G. Kruk et al., “LHC Software Architecture [LSA] --
Evolution Toward LHC Beam Commissioning”,
ICALEPCS’07.

[8] K. Fuchsberger et al., "Status of JMad, the Java-API
for MADX", IPAC’11.

[9] L. Ponce et al., "Operational Experience with the
LHC Software Interlock System", ICALEPCS'13.

MOPGF024 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

144C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Upgrades

