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Abstract 
During the first Large Hadron Collider (LHC) [1] shut-

down period, software for the LHC Beam-based 
Feedback Controller (BFC) and accompanying Service 
Unit (BFSU) [2] was migrated to new 64-bit multi-core 
hardware and to a new version of CERN's FESA [3] real-
time framework. This coincided with the transfer of 
responsibility to a new software team, charged with 
readying the systems for beam in 2015 as well as 
maintaining and improving the code-base in the future.  

In order to facilitate the comprehension of the system's 
90'000+ existing lines of code, a new testing framework 
was developed which would not only serve to define the 
system's functional specification, but also provide 
acceptance tests for future releases. This paper presents 
how the BFC and BFSU systems were decoupled from 
each other as well as from the LHC plant's measurement 
and actuator systems, thus allowing simulation-data 
driven instances to be deployed in a test environment. It 
also describes the resulting Java-based Domain-Specific 
Language (DSL) which allows the formation of 
repeatable acceptance tests. 

INTRODUCTION 
LHC operators rely on a feedback system in order to 

stabilise/correct and adjust the beams’ closed-orbit, 
betatron tune, energy and radial loop [4] during the 
various stages of the operational cycle from filling to flat-
top.  The system is triggered at up to 25Hz by input 
signals from over 1’000 Beam Position Monitors (BPM), 
along with 6 tune measurements from Base-Band Q 
(BBQ) [5] measurement systems.  The BFC sanitises this 
data, before calculating the necessary currents to send to 
various LHC steering dipoles and quadrupoles - The 
effects of which should be observed in the next iteration 
of the feedback loop (via the BFSU 1Hz instrumentation 
layer). 

When a new team took charge of the existing codebase, 
it was apparent that many changes would be required to 
port the code to new 64 bit hardware, and to migrate to 
the latest FESA framework.  This meant that testing the 
new software before the LHC start-up would be 
imperative. Testing using real signals from over 1’500 
I/O devices round the LHC would not only be difficult 
during the machine’s shutdown, but would be impossible 
when the LHC became operational.  Consequently it was 
decided to create a testing framework which could 
emulate the BFC’s input signals, the effect of which could 
then be observed via the BFSU at 1Hz.  Test cases would 
then be written, for asserting that the BFC and BFSU 
were reacting correctly to the conditions defined by the 

test.  It was also acknowledged that test developers may 
not be software experts, and may therefore be 
uncomfortable learning how to use a potentially complex 
API.  In this context, a descriptive DSL would abstract 
the testing framework to be easily used by test creators. 

Realising the framework, would not only require new 
testing code, but would entail many changes to the BFC 
and BFSU themselves, in order to allow instances of the 
software to be deployed outside their specialised 
operational hardware.  Also, spoofing the BFC’s input 
data would require relaxing of the BFC’s data integrity 
checking mechanisms without compromising security in 
the operational system. 

ADAPTING TO LIFE IN THE LAB 
During 2014, the BFC and BFSU were ported to the 

new 64 bit architecture / FESA3 framework and the team 
had a release candidate ready for testing. Before any 
testing framework could be developed however, several 
changes to the software would be required to allow the 
software to be tested.  

 
Figure 1: Software adapted so any number of BFC / 
BFSU pairs can be started, even on the same machine. 

The new operational feedback system comprises of 2 
multi-core Linux based (with Red Hat’s MRG*  kernel 
extension) HP Gen8 Blade machines.  In order to assure 
real-time performance, the BFC is isolated from the LHC 
control system, with the BFSU acting as a client-facing 
data / setting proxy.  A 2nd Ethernet link is used to 
transfer (~130Mb / sec) data between the BFC and BFSU 
                                                           
* Messaging Real-time Grid. 
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during operational conditions.  Reproducing this exotic 
hardware configuration would be both costly and un-
necessary for our testing framework, so the code was 
modified to allow any BFC instance to be connected to 
any BFSU on any IP address including loopback (i.e. both 
on the same machine).  Deploying in loopback proved 
problematic with the original software design, as the BFC 
and BFSU were both bound to similar network ports, so 
the 36 existing hard-coded port numbers where converted 
into offsets with respect to a single configurable base-
port.  This way, any number of BFC / BFSU unit pairs 
could be started on the same machine without having any 
port clashes (see Fig. 1).  

The BFC design is different to most of the real-time 
software developed for the LHC due to its tight real-time 
constraints.  Consequently, the system was compiled and 
linked on the operational hardware itself, using machine 
optimized compilations of CERN’s Root libraries.  This 
was not ideal for compiling and testing via the new 
framework, so the system build was adapted to use the 
standard SLC6 environment. It was assumed that with the 
latest 64 bit hardware increasing CPU power from 4 core 
to 24 core machines, real-time constraints would not be 
compromised. 

TEST SYSTEM OVERVIEW 
While testing a system would traditionally start with 

writing unit tests for individual components and then 
building integration and acceptance tests on top of these 
fundamentals, the approach taken here was a bit different. 
Starting with unit tests was problematic, because classes 
on the BFC have a high inter-dependency. Our main goal 
was to bring the system (focussing mainly on the BFC) 
into a test harness in order to observe and verify the 
global behaviour while gaining confidence for future 
changes. To accomplish this, it became clear that the 
BFC’s I/O channels (UDP packets, described later) could 
already provide us with a clean way to inject our tests. 
This choice has the following advantages: 

 Minimal changes required in the BFC. 
 UDP is language independent; we were free to 

choose any language for the test system. 
Given the option of choosing any language, we decided to 
use Java as the implementation language for the testing 
framework, for the following reasons: 

 Java is widely used in the LHC environment, so 
more people will be able to easily use and extend the 
framework providing more tests. 

 Interactions with other parts of the control system 
(e.g. settings management) are natively possible in 
Java. This allowed us to easily write tests involving 
operational settings and/or even verify consistency of 
such settings with the framework. 

 It allowed us to gain first experience in the behaviour 
of Java in a real-time environment. 

An important aspect taken into account in the design of 
the testing framework was the fact that tests of different 

layers would be required. We identified the following 
types of tests: 

 FESA mechanics: e.g. asserting that setting a value 
in one FESA property has the desired effect in 
another. Despite the fact that this functionality is 
only for interfacing with the control system, these 
tests turned out to be the most frequently required, 
due to the complexity of the BFSU’s API. 

 Communication: e.g. send some predefined values 
for an orbit and check if the values are correctly 
processed through the layers. 

 Control loop behaviour: e.g. send a constant orbit 
verifying the resulting corrections. From an 
operational viewpoint these are the most interesting 
tests, as they highlight instabilities and allow error 
predictions. 

These different abstraction layers are reflected in the 
testing framework’s DSL as described later. 

PLANT VIRTUALISATION 
Without input signals the feedback system does nothing 
apart from reporting timeouts.  To operate correctly, the 
BFC needs the following (see Fig. 2): 

 BPM packets: Sent at 25Hz from the BPM systems, 
they contain position measurements (~500 values per 
beam and plane). 

 BBQ packets: Sent between 1 and 100Hz from 3 
BBQ systems, they contain the measurement values 
for the tunes (1 value per beam and plane). 

 Orbit trigger: Hardware trigger at 25Hz, which 
starts orbit averaging in the BPMs, and also data 
collection in the BFC. On reception of this trigger, 
the BFC opens an acceptance window (~10 ms), in 
which arriving packets are processed for one 
feedback iteration. 

In order to test the system, the testing framework must 
virtualise these BPM, BBQ and Orbit Trigger input 
signals as well as capture the output signals (to avoid 
sending to the correction magnets).  Luckily, most of the 
input signals already arrive via UDP packets, so spoofing 
the data was feasible.  The only exception in the new 
feedback system is the Orbit Trigger which arrives via a 
cable from the Beam Synchronous Timing (BST) [6].  To 
facilitate the spoofing of this input signal, code was 
modified in the BFC, and the trigger’s interrupt was 
handled in a dedicated thread which delivered the trigger 
into the BFC’s main loop via a UDP packet.  Although 
this added a small jitter to the trigger, the additional 
overhead of passing through a local UDP port was 
deemed acceptable. 

All the operational I/O systems communicating with 
the BFC are written in C++, and the UDP packets’ 
content are declared as C structs.  Our chosen language 
for the test however was Java, so these structs had to be 
emulated by Java classes which could be de-serialised / 
serialised to / from a stream of bytes which mimicked 
exactly the structs from the real systems.  Also, the 
contents of our packets had to adhere to the strict data 
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quality rules specified by the BFC, including information 
used for diagnostics.  Even if we were not interested in 
testing things such as temperature from our framework, 
this diagnostics data must be within sane limits. 

Figure 2: Framework must virtualise LHC I/O signals and 
decouple from private Ethernet dependency. 

TEST FRAMEWORK ARCHITECTURE 
Figure 3 shows the core components of the testing 
framework and their different layers as follows: 

 The main work and internal logic is done in the 
service layer. It combines data from the lower layers 
and provides convenient methods for the upper 
layers for dedicated tasks (e.g. ‘create an orbit with 
certain properties’). 

 The lowest backend layer contains various adaption / 
delegation classes for subscribing to FESA devices, 
creating simulated orbits, reading settings, creating 
UDP packets, etc.  

 From a functional perspective, the service layer 
would be sufficient to write the tests. However, to 
make tests more expressive and readable by non-
programmers, we followed domain driven principles 
and put a layer of a Java-embedded Domain Specific 
Language (eDSL) on top. It was implemented as a 
fluent Java API, using method chaining as the main 
syntax concept. The starting points for all the fluent 
clauses are grouped by topic in classes (e.g. 
OrbitCreationSupport for clauses which create 
different orbit types). 

 
Figure 3: Overview of the testing framework architecture. 

As a framework to execute our tests, we chose the 
JUnit framework, which simplified test creation and 
report generation as well as using well established 
matching libraries (hamcrest, assertj) to formulate 
assertions. The framework provides an abstract class, 
AbstractFeedbackTest, which can be used as a base class 
for all tests. It is preconfigured with instances of each 
support class and provides delegation methods to them, so 
that inheriting tests can formulate fluent clauses without 
instantiating any additional objects. 

THE DOMAIN SPECIFIC LANGUAGE 
To get a general impression of the different features of 

the testing framework and the eDSL in particular, we will 
show some selected examples. Since the execution of the 
tests is based on JUnit, the skeleton of a test will always 
look something like this: 

 
Most tests involve communicating with the BFC, so the 

language provides the means to construct packets of a 
particular type and send them: 

 
A burst represents a set of packets which simulate the 
state of the LHC at a moment in time (i.e. one orbit). A 
more meaningful test would be to construct an orbit with 
all zero values and send it (this time using defaults for 
duration / period, spawning the sending in the 
background, checking the publishing from the BFSU and 
then awaiting the termination of the sending): 

 
Creation of other orbits is also supported. e.g. Constant 
single outliers or (artificial) flat orbits with constant 
values: 
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AbstractFeedbackTest 

FESA receivers/converters, UDP senders, 
Configuration parsers, JMadDelegate, 

LsaDelegate 

ElementService, OrbitCreationService, 
PacketCreationService, BatchSendingService, 

CollectingService 

OrbitCreationSupport, BatchSendingSupport, 
PacketCreationSupport, CollectingSupport 

BFC/BFSU (System under Test) LSA[7], JMad[8]
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Finally, the language also provides a convenient way to 
retrieve and manipulate FESA properties and fields.  

This last feature turned out to be very useful for other 
applications and will be extracted in the near future to a 
dedicated package to facilitate its re-use by others. 

RESULTS 
Within minutes of first beam, the new feedback system 

was supplying operators with orbit data, as well as 
successfully applying orbit and tune feedback.  When 
operators tried to load different reference optics however, 
the new software didn’t behave as expected.  Despite 
testing most of the basic system functionality, the 
framework didn’t have a dedicated acceptance test for 
reference optic changes, but the team were able to quickly 
reproduce the phenomenon in the testbed, solving the 
problem without further disturbing operations.  Another 
problem not covered by the tests involved a rogue BPM 
system sending corrupted timestamps which caused 
the Software Interlock System[9] to dump the beam 
several times.  Again, the team reproduced the 
phenomenon in the testbed, and quickly supplied a 
patch to fix the problem operationally. 

A weakness of the framework was highlighted during 
the first few months of operation, when problems with the 
delivery of timing events occurred during optics reference 
changes.  In this case, the testbed was unable to reproduce 
the problem unless an accompanying test framework for 
the timing event delivery was also available.  In the long 
term, it is hoped that such a framework will become 
available, but in order to solve this issue, the operational 
system had to be used to diagnose and solve this problem. 

FUTURE PLANS AND OUTLOOK 
The acceptance test coverage is still relatively low, so 

the team plans to continue developing new tests for 
existing functionality as time allows.  However, any new 
feature added to the BFC or the BFSU must have 
accompanying acceptance tests if possible. 

During the next 12 months, the team plan to implement 
a new streamlined BFSU API which will use new features 
now offered by the latest FESA3 framework.  The 
delivery of this new API will be progressive, and released 
in parallel with the existing API.  In order to assure that 
the new API is functionally equivalent, the plan is to 
duplicate the existing tests and adapt them to the new 
API.  A third set of tests will then assert that the results of 
the tests with the old API and new API are equal. 

Presently, the output of the BFC in test conditions is 
muted.  There is an ambitious plan to capture the BFC 
output (UDP packets destined for the corrector magnets) 
within the acceptance test, and combine it with the input 
signals for the next iteration.  With this in place, we 

effectively close the feedback loop within the testing 
framework. 

There are also plans to use the experience from this 
testing framework to test other systems.  Several systems 
such as the BBQ tune measurement system and the LHC 
beam-loss monitoring system will also require porting to 
the new FESA3 framework, and will therefore benefit 
from offline testing.  Whilst the scope of tests on these 
systems will be less than for the feedback system (they 
rely on dedicated hardware), basic I/O tests can still be 
performed.  In the long term, these systems could also 
benefit from more extensive acceptance tests, if like the 
feedback system, the systems are re-written to 
accommodate simulated data in place of acquisition cards 
for example. 

CONCLUSION 
The testing framework enabled the new software team 

to understand the code they inherited, and provided 
functional documentation in the form of test assertions. 
The tests highlighted many bugs which would probably 
have gone un-detected until the LHC start-up; bugs which 
would have hindered the operators during a very critical 
period.  Importantly, the testbed has also given the new 
software team the confidence to roll out several changes 
to the software during 2015, citing the testbed assertions 
as confirmation that the new release should be acceptable. 
Of course the testbed will never guarantee that a new 
release is bug-free, but the confidence is certainly 
increased. 

The resulting framework has proved that one of the 
most complex pieces of software in the LHC can be tested 
offline, and should serve as an inspiration to develop 
other test frameworks for other critical systems at CERN. 
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