
INTRODUCING THE SCRUM FRAMEWORK AS PART OF THE
PRODUCT DEVELOPMENT STRATEGY FOR THE ALBA CONTROL

SYSTEM
G. Cuni, F. Becheri, D. Fernandez-Carreiras, Z. Reszela, S. Rubio-Manrique, ALBA-CELLS

Synchrotron, Cerdanyola del Vallès, Spain

Abstract
The Controls Section at the Synchrotron ALBA[1],

produces and supports the software to operate the
accelerators, the beamlines and the peripheral
laboratories. It covers a wide range of disciplines like
vacuum, motion, data acquisition and analysis, graphical
interfaces, or archiving. Since the installation and
commissioning phases, we have been producing the
software solutions mostly in single-developer projects
based on the personal criteria. This organization scheme
allowed each control engineer to gain the expertise in
particular areas by being the unit contact responsible to
develop and deliver products. In order to enrich the
designs and improve the quality of solutions we have
grouped the engineers in teams. The hierarchy of the
product backlogs represents the desired features and the
known defects in a transparent way. Instead of planning
the whole project upfront, we try to design the products
incrementally and develop them in short iterations
mitigating the risk of not satisfying the evolving user
requirements. This paper describes the introduction of the
Scrum framework as the product development strategy in
a service oriented organization like the Computing
Division at Alba.

INTRODUCTION
Alba is a 3rd generation Synchrotron Light facility

located in Cerdanyola del Vallès, (Barcelona),
commissioned in 2012 with seven operational soft and
hard X-ray beamlines, devoted to experiments in
biosciences, condensed matter (magnetic and electronic
properties, nanoscience) and materials science among
others. Nowadays, two new beamlines are in construction
(infrared microspectroscopy and low-energy ultra-high-
resolution angular photoemission for complex materials).

In addition to the Controls Section, the Computing and
Controls Division has other 3 sections devoted to
management systems software, electronics design and
support or Information Technology systems and network
administration. The mission of the division is to offer
services and give support to the beamlines, laboratories
and accelerators, as well as to the whole installation to
produce high quality experiments. The range of services
comprises hardware and software solutions for control
systems, personal safety, equipment protection, data
acquisition, data analysis, high performance computing,
document management, and networks and
communications among others.

ORGANIZATION OF THE CONTROL
SOFTWARE DEVELOPMENT DURING

THE INSTALLATION AND EARLY
OPERATION

The Controls Section was setup in the early 2005.
During the phases of design, construction and installation
the size of the team was progressively increasing until the
current 16 members. The section was responsible for the
design, installation and commissioning of projects in a
wide range of disciplines, for both accelerators and
beamlines. The fact of being a single support group for
the whole facility showed important competitive
advantages during the installation, where peak loads,
could be better managed balancing manpower among the
different customers. The software design, development,
and the protection systems were scheduled in parallel for
the accelerators and the beamlines, although the
installation and commissioning of the accelerators
engendered peak loads, which often took precedence in
order to match the milestones and manage the critical
paths for the deliveries. The project and the group relied
on common tools, technologies, international
collaborations and internal-developed transversal libraries
and frameworks, crucial for keeping the service support
manageable and the service level agreements.

The different products and subsystems were
progressively delivered, and run in production. At this
stage, the section started to share efforts between the on-
going projects and the service support with a number of
bugs and defects to fix at the beginning, and later an
increasing number of service requests and requests for
change. The service desk relies on a ticketing system
where every issue is registered with the relevant
information to be classified by priority, unit (e.g. an
accelerator’s group, a specific beamline, etc.), and service
(e.g. a subsystem like vacuum, motion, graphical
interfaces, etc.). In this scenario, although all products
were based on common tools, they were mostly
developed by individuals, who ended up taking the
responsibility for the related tickets (bugs or new feature
requests), and therefore the particular knowledge of the
product could not be spread.

Once the Control System has been delivered, during the
operation, new features, bug fixes, and advanced
functionalities need to be properly scheduled for
deployment and commissioning in very restrictive time
slots (mostly on shutdowns or “maintenance days”).
Furthermore, during operation, the support and
maintenance tasks for the running products gain priority

MOD3O04 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

60C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Systems Engineering, Project Management

against new developments due to its critical effect on the
stability, the performance, or new capabilities of the
installation.

The combination of service management best practices
and project management methodologies for the
development of controls software has proven to be
successful [2] allowing us to give support and rapidly
respond to incidents as well as periodically provide
updated versions of the software packages of the Alba
Control System [3].

SPREADING THE KNOWLEDGE
Taking responsibility for a project is often a great

motivation for a software developer. Making one single
person responsible for the development, installation and
support of a particular product is in many cases efficient.
The developer feels immediately committed to the project
and motivated for delivering a high quality product in
time and within specifications. However, sometimes a
project may be unmanageable by a single person, or in
case of a deployed product in operation, the necessary
knowledge needs to be spread and transferred to a bigger
group to accomplish the required service level (i.e. 24/7).
Having regular meetings among all the members of the
group help to share information, functionalities, feature
requests etc., so the team gets updated on the evolution of
the products. However, although weekly meetings keep
the group informed and the dedicated collaborative
brainstorming sessions are also setup occasionally to
inject fresh ideas into the project dynamics, the ownership
of the products remains in the developer hands.

During the operation and support of the service, having
the specific know-how of complex products centralized in
one person has important risks. An urgent issue may be
raised and require dedication of a person who had already
committed 100% of his work time to another issue, a
scheduled maintenance task or a delivery on a fixed
deadline. Being the only developer able to do some tasks
creates also internal stress when equally urgent high
priority issues appear. Besides, the developers can get
stuck inside their own knowledge, unable to reach beyond
their projects’ scopes, not being able to be open to other
projects or perform other collaborative activities.
Moreover, if a developer leaves the team, there is an
impact on the pace of product delivery. The orphaned
projects need to be distributed among the rest of the team,
who although know the tools, need to learn about that
particular project, and the newcomer will only be able to
take over some projects after long learning period. The
combination of the single-developer projects with the
service support of the existing products given by
individuals leads to the following difficulties:

 Single developer bottlenecks
 Single person of contact for services has to take

decisions on priority when new issues arise
 The team knows the highlights of projects but not the

insights

 Developers are not aware and therefore do not profit
from other similar solutions already provided by the
group

 Newcomers (50% of the team was renewed in the
last three years) need to learn common tools,
frameworks, and libraries. This requires a huge effort
from senior members to setup trainings and give
support to the newcomers

Once the Alba’s operation started, for the reasons above
stated, we decided to explore other alternatives for
managing projects and services in parallel. Agile
methodologies focus on the collaborative work and
empower team culture especially needed when interests of
the group take precedence over personal projects.
Sometimes, projects require an extra effort due to
deadlines or events that cannot be postponed, and a team
has to work together for a while, leaving the individual
projects in a frozen state.

THE SCRUM FRAMEWORK
The Scrum [4] process was conceived in the early 90’s,

based on a research stressing the importance of teams and
indicated the excellent performance achieved when teams,
as small and self-organized, are fed with objectives
instead of tasks: “the best teams are those that are given
direction within which they have room to advice their own
tactics on how to best head toward their joint objective.
Teams require autonomy to achieve excellence”.

Scrum is a framework for developing and sustaining
complex software products based on an empirical process
approach where more is unknown than known and
predictions have little value given a high rate of change
and uncertainty. In this environment, knowledge comes
from experience and making decisions based on what is
known. It is not a process or a technique for building
products, but a framework that makes clear the relative
efficacy of the product management and development
practices enabling improvement.

The Scrum Team
There are three core roles that compose the Scrum

Team: a Product Owner, the Development Team, and a
Scrum Master. The Scrum Team is self-organized in
order to accomplish the objectives, and has all the skills
required to execute the work to be done. The Product
Owner is responsible for maximizing the value of the
product and the work done by the Development Team
ensuring that Product Backlog items have clear
definitions, they are ordered to best achieve goals, and
confirming that the Development Team members
understand them to the level they need. These people are
the professionals that create the Product Increment
functionalities based on the Product Backlog items, and
the accountability belongs to the Development Team as a
whole. The Scrum Master is the facilitator whose
responsibility relays on ensuring that the Scrum Team as a
group follows the rules to maximize the value to be
created, and promoting the self-organization.

Proceedings of ICALEPCS2015, Melbourne, Australia MOD3O04

Systems Engineering, Project Management

ISBN 978-3-95450-148-9

61 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Scrum Events
Scrum suggests a set of events with a predefined

maximum time length to fulfil all the coordination and
management activities. The Sprint is the core event, it
consists of the Sprint Planning, Daily Scrums,
development work, the Sprint Review and the Sprint
Retrospective. Sprints duration is often limited between a
week and a month. Delivering products iteratively and
incrementally maximizes opportunities for feedback and
reduces the risk of changing requirements or increasing
complexity. The Sprint Planning is a time-boxed event
where next possible deliverable increments are selected,
discussing how will be the work done. Daily Scrums are
events of fifteen minutes fixed length, where the
Development Team shares progress since last Daily
Scrum, organizes the work paying attention on any
blocking situation that may prevent reach the planned
increments. At the end of the Sprint, the Sprint Review
checks the work that has been done, and what has been
not finished based on the original planning. The Sprint
Retrospective analyses how the team has performed in
terms of communication, coordination, and means to
achieve the work, with the objective of identifying what
can be improved for the next Sprint.

Scrum Artifacts
The Product Backlog is the main artifact of Scrum, it is

a unique ordered list of items that describe what is still
needed to be done for a particular product and it is
responsibility of the Product Owner to expose which are
the current known requirements. The Sprint Backlog
contains the items that have been selected, and the tasks
identified in the Sprint Planning which are needed to do
the work. At the end of the Sprint, the Product Increment
is a concept that combines all Product Backlog items that
have been completed.

EMBRACING THE SCRUM
FRAMEWORK

Evaluation Phase
By the end of 2013, the Controls Section had three

individual projects that required an internal boost. There
was a big opportunity to evaluate if Scrum would help in
the organization, execution, and coordination endeavors.
During the first half of 2014 this exercise was started by
defining the roles and following the Scrum rules and
events, planning sprints with well-defined user stories and
focusing on small product increments. It was soon
appreciated the benefits of the enforced communication
and implicit collaborative activities in that controlled
environment, and at the end of this first implementation,
there were very satisfactory results. There are plenty of
documented advantages of incremental agile software
development, and the list below highlights the outcomes
from that research experiment:

 Designing solutions by teams instead of individuals
lead to more robust products and of better quality

since each member contributes from his experience
and point of view

 Incremental and iterative approach helped in
validating important assumptions fast what mitigated
the cost of change

 Constant focus on delivering potentially shippable
product increments enabled achieving earlier return
of investment

 Self-organized development team did not require
constant supervision and worked in a stress-less
environment

These preliminary tests had proven that applying Scrum
for complex software developments helps in achieving
better results, and based on the size of the projects these
are some recommendations:

 The best team size is from 4 to 6 members
 Two weeks sprint length has proven to be a good

choice
 One controls engineer should not be part of more

than one development team at a time
 Due to the support nature of the section, dedication

of 60% of the time for the Sprint Backlog, keeping
the other 40% for incidents, and high-priority
individual service requests (which cannot be
foreseen when planning) seems reasonable

Creation of the Scrum Teams
After this first contact with Scrum, a plan to enhance

the Controls Section’s development strategy was started.
It was focused in incrementally changing the group
organization for new developments and critical problems
where collaborative work was clear to be an advantage.

The Scrum Master and Product Owner roles have been
assigned at the beginning, sharing a common vision on
how each project would enter in each team backlog. Our
customers were informed about the change in how work
will be planned.

During mid-2014 the first group built was the Beamline
Control Systems Scrum Team. The communication
channels between beamline scientists and controls-
contacts didn’t require any change, and it was enough to
take care identifying those requests about complex
problems for which design and implementation activities
would be worth sharing. Those requests were then merged
in a general, serialized and prioritized top-level product
backlog that provided a clear view of what needed to be
addressed during each sprint iteration for all beamline
developments.

After few sprints, a second group mostly dedicated to
internal software frameworks did the same transition,
starting by defining specific product backlogs for all the
individual projects that had been managed by each team
member, and created a unified product backlog view that
combined all the requirements that the team would have
to work together when implementing them. While
learning from co-workers, the developers enjoyed to
contribute with their own points of view. At the end of
2014, we created a third team, and in the course of the

MOD3O04 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

62C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Systems Engineering, Project Management

first quarter of 2015 we have started building the fourth
and last squad.

Tools for the Scrum Artifacts
In the adoption of Scrum, it was enough to enrich the

same platform that was already used for project tracking:
Redmine which has plugins for managing product
backlogs. Having a tool that provides at any point in time
the possibility to monitor the Sprint progress is essential.
The team can report progress by simply interacting with a
shared board, inputting the remaining work which are
very valuable inputs for the Daily Scrum, and can be
simply extracted from auto-generated charts at any time.

Figure 1: Team Backlog, TaskBoard and BurnDown chart.

Sprint Reviews and Retrospectives
Sprint reviews and retrospectives offer great

opportunities that let information flow, and over the time,
some topics evolve while others remain. Additionally,
those meetings gave a chance to really keep track of the
project evolution as a whole by reviewing the work from
the given value perspective, and considering how it was
reached. In nearly all retrospectives, one concept that
repeats quite often is to bear in mind that during the
sprint, one should spend some time in backlog refinement
even that this task does not add any value to the current
sprint product increment, it is fundamental for the next
planning. Clear “definition of done” explanation in
backlog items help when preparing the tasks, when
developing to fulfil those requirements, because it reduces
uncertainty forcing that everyone understands it. Our

experience showed that it is really important to keep in
mind some buffer of time reserved for support-oriented
duties when calculating the sprint capabilities..

CONCLUSION
The introduction of the Scrum Framework as part of the

product development strategy has proven to be very
successful. It has been extremely important to start with a
pilot program which facilitated the selection of the right
tools, and gave hints on how the system could be tailored
for our needs. Focusing on communication and the value
given to our customers, as well as ensuring that there is a
clear definition of what has to be done, helps during every
stage of the development because all the team members
are enforced to understand and agree on next steps. It is
essential to have available a view of how the team is
performing and what is still pending to be done within the
Sprint. Also, having the Sprint Backlog defined upfront,
indicates that the Product Owner admits that items not
planned will be left for later phases, hence the team can
concentrate the efforts in a limited set of projects. Actions
like code reviews, pair programming and retrospectives
about the process itself are activities that empower the
team building process.

It is worth to mention that we still keep individual
projects outside the Scrum Teams, mainly research
activities, developments of proof of concepts and
prototypes that are conceived as personal objectives and
create personal and professional growth.

ACKNOWLEDGMENT
The authors would like to thank all Alba’s Controls

Section members for their openness in this adoption, and
the collaborative mind-set when brainstorming in order to
find the best matching for the Scrum theoretical
framework and our specific facility environment. We
would also like to thank the whole MIS section for their
partnership in updating Redmine and installing the
plugins needed for this purpose, as well as our customers
for their cooperation and comprehension during this
transition.

REFERENCES
[1] Alba website: http://www.albasynchrotron.es
[2] D. Fernández-Carreiras et al. “Using Prince2 and Itil

practices for Computing Project and Service
Management in a Scientific Installation”,
ICALEPCS2013, San Francisco, United States,
TUMIB01

[3] D. Fernández-Carreiras et al. “Status of the ALBA
Control System”, ICALEPCS2009, Kobe, Japan,
TUP090

[4] Scrum Guides website: http://www.scrumguides.org/

Proceedings of ICALEPCS2015, Melbourne, Australia MOD3O04

Systems Engineering, Project Management

ISBN 978-3-95450-148-9

63 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

