
CONTINUOUS DELIVERY AT SOLEIL

G. Abeillé, A. Buteau, X. Elattaoui, S. Lê, Synchrotron SOLEIL, Gif-sur-Yvette, France
G. Boissinot, Zenika, Paris, France

Abstract
IT Department of Synchrotron SOLEIL [1] is structured

along of a team of software developers responsible for the
development and maintenance of all software from
hardware controls up to supervision applications. With a
very heterogonous development environment such as,
several software languages, strongly coupled components
and an increasing number of releases of the entire
software stacks, it has become mandatory to standardize
the entire development process through a “Continuous
Delivery approach”; making it easy to release and deploy
on time at any time. We achieved our objectives by
building up a Continuous Delivery solution around two
aspects, Deployment Pipeline [2] and DevOps [3].

A deployment pipeline is achievable by extensively
automating all stages of the delivery process (the
continuous integration of software, the binaries build and
the integration tests). Another key point of Continuous
Delivery is also a close collaboration between software
developers and system administrators, often known as the
DevOps movement.

This paper details the feedbacks on how we have
adopted this Continuous Delivery approach, modifying
our daily development team life and give an overview of
the future steps.

SOLEIL CONCERNS&ANALYSIS
Synchrotron SOLEIL is a service center that delivers

photons to external scientific users. The 24/7 operation of
the Synchrotron SOLEIL facility relies on developed
software by the “Control and Acquisition Software” team.
This team has to regularly deliver changes requested by
the business; it has become a challenge to perform it in
the right timeframe. That is why the Continuous
Integration and Delivery concepts have been studied. The
main objective of these concepts is to automate every
single process from the code building up to its operation
in production.

Continuous Integration
Continuous Integration is a practice for detecting

software defects at the earliest stage possible within the
full development cycle to limit them via the automation of
every step. Continuous Integration relies on key elements
such as:
 Version Control: everything must be checked in to

a single version control repository: code, tests,
build and deployment scripts…

 Automated Build: Every project must be built and
tested from the command line and must be
runnable into the Continuous Integration
environment.

 Team agreement: The commitment of the whole
development team is required. Everyone must
frequently check in small changes; and agree that
the highest priority task is to fix any change that
breaks the application.

Continuous Delivery
Continuous Delivery goes a step further. It assures to

deliver a fully working and tested software in small
incremental chunks to the production platform. It enables
frequent release and deployment. All phases of a software
product lifecycle from its coding up to production
maintenance have to be automated (Fig. 1).

Figure 1: Continuous delivery.

DevOps
Soleil DevOps philosophy strengthens up a

collaborative mode between the Development and
Operations staff to achieve the same objectives: provide a
full set of IT services meeting both business and IT
requirements in terms of functionalities, responsiveness,
and availability. DevOps is the mandatory journey to
obtain a fully operational continuous delivery process.

Expected Benefits
The main expected benefits for SOLEIL of these methods
are:

 Reduce all potential error-prone manual
actions

 Reduce time to delivery; improve the
reproducibility, repeatability and reliability of
the delivery process.

 Federate the team around a common work
process

 Focus on coding business requirements rather
than on tooling

 Improve the synchronisation between change
management and operation; reduce the number
of incidents

Code

Build

Unit &
Integ
tests

Accept
ance
tests

Deploy

Operat
e

Monito
r

Proceedings of ICALEPCS2015, Melbourne, Australia MOD3O02

Systems Engineering, Project Management

ISBN 978-3-95450-148-9

51 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

SOLEIL CONTEXT

Figures
The Soleil Control and Acquisition Software team is

composed by:
 4 full time equivalent Java developers
 3 full time equivalent C++ developers
 1 full time equivalent for system administration
 1 full time equivalent for quality assurance

This team has to manage:
 380 software modules in Java or C++.
 Production under Linux or Windows
 All source code and scripts are checked-in

various version control repositories: 1 local
CVS server and 3 remote SVN servers.

 The dependency management and build tool
used for Java and C++ codes is Maven 2 [4].
All code is continuously built and monitored
within a “scheduler” web server called
Jenkins [5]. It contains approximately 500
jobs.

 All the artifacts produced by Jenkins are
stored in an artifact repository called Nexus
[6]

The current CI platform architecture is the following (Fig.2) :

Figure 2: Current CI platform.

Each member of the team has to manage a very high
number of components and their dependencies. Figure 3
is dependency tree example that illustrates the complexity
of mastering a module’s dependencies:

Figure 3: Dependency tree of a SOLEIL Java module.

Only a subset of our projects contains unit and
integration tests.

 “Zip” packages are assembled with Maven and
delivered at every Machine shutdown (~ every 2 months)
on 30 production platforms. The deployment process is
fully automated with Linux shell scripts. The packages

deployment interrupts each production platform for
approximately 2 hours. Very basic acceptance tests are
run manually directly after deployment during this time-
slot.

The production platforms have been standardized
almost everywhere:

 All the Linux servers have been just
virtualised with the container technology
OpenVZ [7]. There are 145 containers in
operation.

 200 industrial PC that controls hardware with
windows.

 130 “exotic” PCs that are imposed by
suppliers of detectors, power supplies…

Real Life Situation
With such heterogeneity, it is a daily challenge to

maintain such a Continuous Integration platform. As the
main issue of the current solution is due on its global
complexity, a limited number of admin are able to
administer this platform.

The number of failed jobs in Jenkins is still high as
some developers are considering Jenkins notification
emails just as spam emails.

The current solution suffers also from technical issues,
i.e. we are stuck with legacy versions of the tools because
the upgrade is far from trivial.

Moreover, some parts of the C++ modules are not even
considered in the continuous integration system as some
Maven C++ plugins are not fully compliant (i.e. mixing
compiler versions or 32/64 platforms).

Our Continuous Delivery process highlights the
complexity of our software and infrastructure which has
required an audit of the current process. Some aspects
have been totally revamped as detailed hereafter.

OUR CONTINUOUS DELIVERY
SOLUTION

Some key aspects of the delivery pipeline must be
reviewed considering both methodological and technical
aspects.

Team Collaboration
A fully operational deployment pipeline relies primarily

on the commitment of the entire development team. This
aspect has been quite underestimated and it is essential to
emphasize it. A background activity is now being driven
to convince the team that improving the quality of their
deliverables should be the highest priority. A first step is
to encourage everyone to discuss and share on technical
aspects or on work methodologies either during organized
meetings or stand-up-meetings. Furthermore, SOLEIL has
the chance that the Control and Acquisition Software
team is a mix of both developers and system
administrators, but there is still room for improvement
regarding the DevOps movement:

Nexus

Jenkins

Maven

CVS, SVN

Fetch dependencies
Deploy Use

Checkout

MOD3O02 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

52C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Systems Engineering, Project Management

 System administrators need to get closer to the
business requirements for efficiently managing
the infrastructure.

 Developers need to get closer to the operation so
that it becomes a reflex to include key
operational indicators and logging information
for incident analysis when developing a software
service.

The continuous delivery process also introduces a new
central role for the quality assurance staff that is that a
daily challenge considering the small size of the team and
the business pressure for delivering. The quality
assurance manager have to take in charge the building of
the team cohesion, collaboration, communication to
change for adopting the Continuous Delivery paradigm.
He must have also a full DevOps profile to manage the
whole deployment pipeline from assistance and training
of developers to the administration and monitoring of the
Continuous Delivery platform. And finally, he should
constantly review and ensure that the delivery demands
are respected.

Another key success factor is the involvement of the
business since it is directly impacted by some aspects of
the Continuous Delivery process (i.e. the deployment and
the operation of our software deliverables). Exposing our
process and our commitment through a service agreement
enables the business to be part of the process of change
management to validate, accept and plan every delivery.

Change Management
Today, many incidents are still raised due to direct

modifications in the production environment. Forbid this
bad habits and force a strict change management process
are keys to limit incidents in production. Any change has
to be tested before it goes live. Only an approved
deliverable by both IT and business can be shipped to the
production environment.

Simplification
For maintaining the whole Continuous Delivery

platform at a reasonable total cost of ownership, the only
solution is to reduce the number of parameters like:

 the number of software components;
 the number of target platforms;
 the number of Version Control System.

But the path towards simplification is tricky as it
implies a deep reconsideration of our practices. Moreover,
the cost of simplification can be huge.

Build lifecycle and Dependency Management
A software module metadata is split in various

locations:
 Inside the build descriptor on the Version

Control System
 Inside the project job configuration in Jenkins

To manage the large set of components, it is mandatory
to provide a central service that manages the information
and lifecycle of a project, for example:

 Version Control System information
 Authors: e-mail addresses
 Status: OPEN, CLOSED

To afford developers a simple way for managing their
project dependencies, the only solution for SOLEIL is to
enforce a “LATEST” strategy meaning that all retrieved
dependencies of a component are automatically set to the
latest version. It has been made possible by using some
advance features of Maven 2. But the current Maven
solution suffers from issues:

 The update to the latest versions is done by a
polling mechanism and it contains many caches
along the build process. The latest version is not
always guaranteed.

 This latest strategy relies on a deprecated Maven
key word “RELEASE”.

 Consequently, we cannot upgrade to the latest build
tools (Maven 3 [4] or Gradle 2 [8]) because of this
“LATEST strategy”. Since there is no off-the-shelf
solution, the only way is to design a totally custom one.
The lifecycle of our components is imposed by Maven
with only 2 statuses (SNAPSHOT and RELEASE). The
review of the solution has led us defining new statuses
and promotion in between. The new defined statuses are:

 BUILD: project under build
 INTEGRATION: project ready for continuous

integration
 RELEASE: project build, integrated and tagged.

Ready for packaging.
On the other hand, The Maven solution for C++ does

not fulfil all the requirements. So the best solution is to
move to a native tool for C++ build like for example
Scons [9] or CMake [10].

User Acceptance Test (UAT) Platform
Acceptance testing ensures that the user needs,

requirements and business process are met.
At SOLEIL, the only actual testing is done manually

directly into production just after deployment by the IT
and the business teams (when related to Machine
equipment). The deployment operation is quite long and
risky, with an iterative patching and re patching process
until disappearance of incidents, regardless of user
satisfaction.

It is obvious that an UAT platform that mirrors the
production should be set. Then the continuous integration
server will automatically deploy our fresh packages with
the same deployment process as the production’s one. On
this platform, we should at least run manual tests before
establishing more and more automated tests.

Considering that 20% of our software controls
hardware, with some of them unique (vacuum pumps,
power supplies…), we have to develop a simulation
strategy.

Deployment
Currently, only a system administrator deploys zip

packages for linux and windows. A better solution is to

Proceedings of ICALEPCS2015, Melbourne, Australia MOD3O02

Systems Engineering, Project Management

ISBN 978-3-95450-148-9

53 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

use the OS native packaging system such as rpm for our
RedHat distributions so that libraries conflicts can be
detected at the deployment time instead of runtime.

Moreover, all of our binaries are deployed on a central
mounting point with Linux shell scripts. A better solution
is to deploy only the necessary binaries directly of the
right target with tools that allow easy large-scale
deployment whilst adding consistence and compliance
checks. So we need to include tools like Puppet [11],
Ansible [12] or CFEngine [13]…for our deployment
phase.

Monitoring
Enabling efficient and easy ways to monitor the

operation of our deliveries is also one of the key success
factors.

For the monitoring of the infrastructure we use Nagios
[14]. Our system administrator is currently thinly tuning it
to provide key performance indicators, so that every
alarm will be considered as an incident that must be taken
into account immediately.

Our software applications do not provide at this stage
enough audit logging or monitoring indicators. We must
standardize our application logging system for archiving
all of them. Developers should also integrate runtime
application indicators that can then be included in a
monitoring system and thus raise alarms.

Our New Architecture
To address the whole technical points previously

addressed, a new solution has been designed. Here is the
overview of the architecture (Fig. 4):

Figure 4: The new Continuous Delivery platform.

The “Project Manager” provides the service to create,
update and close a project. This service will automatically
configure the Continuous Integration server (Jenkins).

The “Repository proxy” is a service on top a collection
of binary software artifacts and metadata. It provides
some custom functions such as:

 Latest Resolver: it retrieves the latest version of a
component.

 Promotion: it promotes a component ensuring
the pre-defined lifecycle. For example, releasing
a component will create a tag on the Version
Control System and deploy the binary into the
artifact repository.

 Reporting: provide audit reports like for example
the list of promoted artifacts between two dates.

The whole solution is based on the Java technology. All
services are provided as REST (REpresentational State
Transfer) Web Services following the Microservices
architecture [15]. The artifact repository in implemented
with a MongoDB [16] document oriented NoSQL
database. For the UAT automated tests, the technology
choice is to be made.

Plan of Action
Putting in application the whole continuously delivery

process is an enormous challenge given SOLEIL
complexity and the limited resources allocated for this
project. Hence, an iterative strategy has to be defined.

Firstly, the cases of Java and C++ have to be addressed
separately. So a new continuous integration server will be
set-up first for Java modules. The C++ case will be
addressed later. Secondly, the continuous integration
platform will be upgraded before moving on other aspects
such as the UAT platform, the deployment and monitoring
processes.

The new architecture is currently under development.
The “project manager” service is fully operational and the
“repository proxy” service is still under coding.

The SOLEIL infrastructure virtualization has opened up
new possibilities. It is now faster and easier to set up and
change the environment for development, continuous
delivery, and acceptance platforms. So, the set-up and
qualification of new solution platform is in progress.

The toggle to the new Continuous Integration solution
for the Java part is straightforward for Java developers as
the build tool is still the same. The only induced change
should be in the management of the component lifecycle;
the developers have to be trained on how to promote their
components.

For the C++ part, the solution will depend on the
workload. So the a-minima solution will keep Maven
while the “deluxe” will use a native C++ build tool.

Moreover, at every new step or change, a continuous
communication and training of the team must be driven to
remind the IT and business teams why and how it will be
applied. It is now obvious at SOLEIL that the
methodologies and tool set up must follow the maturity of
our team and not the other way round.

Metadata
Repository

Project
Manager

Artifact
Repository

Repository proxy

Latest
resolver

Promotion

Maven 3

Jenkins

UAT
Platform

Reporting

MOD3O02 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

54C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Systems Engineering, Project Management

CONCLUSION
Continuous Delivery is a key activity for conducting

the quality of. IT services. But, the cost for putting the
process smoothly in operation is always underestimated.

The Continuous Delivery approach is holistic and
challenges us on every aspect of our daily practices. It
enforces to manage the total cost of ownership of a
service from its inception up to its operation. A
deployment pipeline automation goal is to reduce the time
and cost of a delivery, so each special case can add more
complexity and cost to it. Therefore there is no other
solution than to standardizing and simplifying all our
practices. In this context, SOLEIL is currently initiating
the implementation of some ITIL practices which is a
framework of best practices for managing IT services
[17].

After a 10 years’ experience of operation, SOLEIL still
need to emphasize a close coordination between
developers and system administrators following DevOps
philosophy.

Continuous Delivery relies on strong convictions. You
have to be intimately convinced and motivated to be able
to convince the whole company including technical staff;
managers; and even business users.

In conclusion, SOLEIL can finally see the light at the
end of the deployment pipeline but putting in application
the Continuous Delivery paradigm is really a long-winded
task worthwhile the effort to obtain the requested quality
level of service.

REFERENCES
[1] http://www.synchrotron-soleil.fr
[2] http://martinfowler.com/bliki/

DeploymentPipeline.html
[3] https://sdarchitect.wordpress.com/2012/07/24/

understanding-devops-part-1-defining-devops
[4] https://maven.apache.org
[5] https://jenkins-ci.org
[6] http://www.sonatype.org/nexus
[7] https://openvz.org
[8] http://gradle.org
[9] http://www.scons.org
[10] https://cmake.org
[11] https://puppetlabs.com
[12] http://www.ansible.com
[13] http://cfengine.com
[14] https://www.nagios.org
[15] https://www.mongodb.org
[16] http://martinfowler.com/articles/microservices.html
[17] Improving SOLEIL Computing Operation with a

Service-Oriented Approach, A.Buteau, ICALECPS
2015, Melbourne, MOPGF150

Proceedings of ICALEPCS2015, Melbourne, Australia MOD3O02

Systems Engineering, Project Management

ISBN 978-3-95450-148-9

55 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

