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Abstract 
Bayesian Analysis provides a statistical framework for 

updating prior knowledge as observational evidence is 
acquired. It can handle complex and realistic models with 
flexibility. The Beam Permit System (BPS) of RHIC 
plays a key role in safeguarding against the faults 
occurring in the collider, hence directly impacts RHIC 
availability. Earlier a multistate reliability model [1] was 
developed to study the failure characteristics of the BPS 
that incorporated manufacturer and military handbook 
data. Over the course of its 15 years of operation, RHIC 
has brought forth operational failure data. This work aims 
towards the integration of earlier reliability calculations 
with operational failure data using Bayesian analysis. This 
paper discusses the Bayesian inference of the BPS 
reliability using a two-parameter Weibull survival model, 
with unknown scale and shape parameters. As the joint 
posterior distribution for Weibull with both parameters 
unknown is analytically intractable, the Markov Chain 
Monte Carlo methodology with Metropolis-Hastings 
algorithm is used to obtain the inference. Selection 
criteria for the Weibull distribution, prior density and 
hyperparameters are also discussed. 

INTRODUCTION 
The Beam Permit System (BPS) of Relativistic Heavy 

Ion Collider (RHIC) monitors the health of RHIC 
subsystems and takes active decisions regarding beam-
abort and magnet power dump, upon a subsystem failure. 
The reliability of BPS thus directly impacts the RHIC 
downtime, and hence its availability. A Monte Carlo 
reliability model based on exponential competing risks 
was developed for BPS previously [1]. This model 
simulated the progression of basic component failures to 
system level catastrophic events. This work together with 
a quantitative fault tree analysis [2] helped characterize 
the failure rate and structural importance of each basic 
component of the BPS. RHIC has been operational for 15 
years, and has gathered hardware failure data over this 
time period. This data represents the actual BPS failure 
attributes from a top level perspective. Bayesian analysis 
is a good candidate for combining these two information 
sources to get a combined inference about the system 
failure characteristics. 

BAYESIAN PARADIGM 
Bayesian statistics is branch of mathematics that deals 

with updating current knowledge about a system or 
process when new information is acquired. Statistical 
analysis follows two major approaches, namely 
frequentist and Bayesian. In the widely used frequentist 
approach, the probability distribution of an event is 
calculated by observing its occurrence over a large period 
of time, and the distribution parameters are assumed to be 
constant over time. In contrast, Bayesian approach keeps 
updating the probability distribution as new data arrives. 
The parameters of the distribution are treated as random 
variables that are modified according to the new 
information gathered. This becomes quite important when 
there are two sources of information about a system or 
process that indicate different results, and both sources 
hold significance to the inference. 

The underlying framework for Bayesian analysis is 
Bayes theorem. Bayesian analysis involves the continuous 
form of the Bayes theorem [3], which is represented as 

|
|

 

The unknown parameter is , which defines the 
probability distribution of any process and is subject to 
change with the arrival of new information. Variable  is 
new source of information in the form of data 
observations. The term  is called as the prior 
distribution of , which can be elicited by using another 
parameter(s) called the hyperparameter(s). |  is the 
likelihood function for  which is calculated by the 
gathering the new data. The term |  is called the 
posterior distribution of , which is a combination of both 
prior and data likelihood function.  is the 
unconditional distribution of the variate x that acts as a 
normalizing factor in the equation. Because  is 
independent of : 

| ∝ |                       (1) 

This equation forms the foundation for Bayesian 
analysis discussed in this paper. We will discuss the 
selection of the prior distribution and data distribution 
(likelihood function) in subsequent sections. 

PRELIMINARY ANALYSIS 
Preliminary analysis is needed to find the suitability of 

Bayesian analysis to our problem and for choosing the 
distribution appropriate to the information sources we 
have. We analyze two the sources of information, the 
results from a Monte Carlo (MC) model [1] and the 
historical failure data obtained from the RHIC hardware 
maintenance records.  

 ___________________________________________  
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Source 1: Monte Carlo Results 
The MC model defines the propagation of component 

failures to a system level, depending upon the states of 
other components and the structure of the system. As the 
component failures were taken from MIL-HDBK 217F 
[4] and the manufacturers’ data, they provided point 
estimate for the hazard rate λ, with exponential survival 
distribution. These exponential failures might evolve as a 
different distribution on the system level. We combine the 
four system level failures modes in the MC model to a 
single failure for applying Bayesian analysis. Next we 
analyze the failure rate pattern of this single failure of 
BPS. 

First, we check if the failure rate follows the Non 
Homogenous Poisson Process (NHPP) [5], for which 
specialized Bayesian analysis is needed. We plot the 
interval failure rates to see if it is time varying, and 
whether it follows a typical distribution. The number of 
failures in an interval of 107 hours is calculated, and the 
failure rate is plotted for each interval in Fig. 1. The rate 
is noisy but has a constant mean over the time. Thus we 
deduce that the MC model failure is not a NHPP.  

 

Figure 1: Detection for NHPP failures. 

Next, we find a suitable failure distribution function for 
the MC model. We run the simulation for 1.3E9 iterations 
and the total failures are recorded as point processes. The 
times between failures are fitted with exponential, 
Weibull and gamma distributions with the forms specified 
in [6] using MATLAB® [7]. The goodness of fit is 
estimated by Akaike Information Criterion (AIC) and 
Bayesian Information Criterion (BIC) [8].  

Table 1: MC Model Failure Distribution 

Distribution Para
meter 

Point 
estimate 

AIC BIC 

Exponential λ 
α 

8.831e-5 
1 

3141125.52 3141136.15 

Weibull λ 
α 

8.829e-5 
1.00046 

3141127.47 3141148.72 

Gamma λ 
α 

8.84e-5 
1.00106 

3141127.44 3141148.66 

 
As seen in table 1, the AIC and BIC are smallest for the 

exponential distribution, which indicates that the   
exponential distribution is the best fit to overall system 
failure. The failure rate is λ and the shape parameter is α.  

Although the military handbook is quite old (1995), its 
applicability to the BPS can justified as RHIC has been 

running since 1997, which was contemporary to the 
release of this version of military handbook 

Source 2: Historical Failure Data 
We analyze the past 15 years of hardware failure data 

of BPS, and select the system level failures that are 
similar to the ones analyzed by the MC model. We find 
overall 16 data points for the time between failures owing 
to high reliability of BPS. To analyze the distribution of 
this data, we fit Exponential, Weibull, Gamma and 
Lognormal distributions using MATLAB® and goodness 
of fit is estimated using AIC and BIC. 

Table 2: Historical Failure Data Distribution 

Distribution Para
meter 

Point 
estimate 

AIC BIC 

Exponential λ 

α 

1.20E-04  

1 

322.9279 323.7005 

 

Weibull λ 

α 

0.000171 

0.627457 

317.6438 

 

319.189 

 

Gamma λ 

α 

6.03E-05 

0.503074 

318.1511 

 

319.6963 

 

Lognormal µ 

σ 

7.7676 

1.99141 

319.0121 

 

320.5573 

 

 
Looking at the table 2, we see that the AIC and BIC are 

now smallest for the Weibull distribution, asserting that 
the BPS has a Weibull survival distribution with 
decreasing failure rate. The historical data distribution 
represents the actual failure characteristics of the system, 
even if the MC model suggests that the system follows 
exponential survival distribution.  

BAYESIAN RELIABILITY MODEL 
The parameters of the posterior distribution reflect the 

tradeoff between the prior distribution and the data 
distribution (incorporated using likelihood function). This 
tradeoff level is determined by the relative strength of 
prior and data distributions. The influence of either can be 
changed by altering the hyperparameters. It is often 
desirable to choose a prior of a form such that the 
posterior distribution calculated is mathematically 
tractable. One of the techniques is to employ a “conjugate 
prior” that yields a posterior of the same form as the data 
distribution [3], but with different parameters. The 
posterior parameters specify the adjustment between prior 
and data.  

For our Bayesian model, the prior information is an 
exponential distribution and the data is a Weibull 
distribution with shape parameter less than 1. We thus 
assume that the prior information is also a Weibull 
distribution with shape parameter equal to 1. Also scale 
parameters of both the information sources is different. 
Thus we need to choose a Bayesian model for Weibull 
distribution with both shape and scale parameters 
unknown. To implement this, we first need to choose a 
conjugate prior distribution that is suitable to the Weibull 
distribution of the data. There is no best way to define a 
prior distribution for Bayesian analysis. The following 
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sections outine the development of the Bayesian model 
step by step.  

Data Distribution 
Vidakovic [9] suggests a model for the Bayesian 

inference of Weibull distribution that is unknown in both 
shape and scale parameters. We follow this model 
throughout our analysis. Following is the Weibull 
distribution used by Vidakovic, with α as the shape 
parameter and -1/α as the scale parameter. Variable x is 
the times between failures data in years. This form does 
not have explicit posteriors for α and η. We will draw 
Bayesian inference for these two parameters. 

| ,  

The likelihood function is then equal to  

, |  

The α and η are treated as variables in the likelihood 
function, and have [0, ∞) support. The most probable 
values are given by  

                       0.6275, 1.2904                     (2) 

  

 

Figure 2: Likelihood function plot with α, η.  

These values are calculated by transforming the 
parameters from the Weibull distribution of data from 
table 2. Fig. 2 plots the 3D likelihood function with α and 
η as variables. Note that α and η values from Eq. 2 
correspond to the maximum likelihood point. 

Conjugate Prior Distribution  
A conjugate prior distribution is proposed for the 

Weibull distribution in [9]. This is a joint distribution for 
α and η, with a hyperparameter β.  

, 	 ∝ 	                          (3) 

Note that we only use the kernel (omitting the 
proportionality constant) of the prior distribution. This is 
explained later in the posterior inference. The prior 

parameter λ (and α=1) representing the exponential 
distribution (Weibull with shape as 1) in table 1 are 
converted to α and η as  

                            1, 0.7741                 (4) 

 These are the point estimates. We need to define the 
joint distribution of α and η so that it best represents our 
beliefs about the prior information. We choose the   
hyperparameter β equal to 3. The reason for choosing β is 
explained by the figures below. The 3D prior density from 
Eq. 3 is plotted with α and η as variables in Fig. 3. Note 
that the magnitude on the plot is unnormalized. The point 
estimates from Eq. 4 are plotted as a red dot on the same 
figure. Note that this point does not correspond to the 
peak of magnitude in the plot. 

  

Figure 3: Prior density plot with α, η. 

To get a clear picture we plot the 2D prior density for η 
with constant 1 in Fig. 4a and the 2D prior density 
for α with constant	 0.7741	in Fig. 4b.  

 

Figure 4: 2D Prior densities for α, η. 

In Fig. 4a, the point estimate lies almost on the peak of 
the density distribution which signifies our confidence in 
the value of scale parameter of the prior obtained from the 
MC model. But if we look at Fig. 4b, the point estimate 

(a)

(b)
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does not lie on the peak, rather much lower than the 
highest magnitude point. This is chosen because the shape 
parameter is a system characteristic, which is less likely 
to change. For the data distribution we saw that α is much 
less than one in Eq. 2. So we express more confidence in 
the lower values of α than the one obtained from the MC 
model. Thus the prior density is higher for smaller values 
of α in Fig. 4b. 

Posterior Inference 
The posterior distribution is a fusion of the prior and 

data distributions that contains all the information of the 
parameters of the system, in our case α and η. From Eq. 1 
we get the proportionality equation (or kernel) for 
posterior as: 

p , | 	 ∝ ∏ ∑  

Here k is the total number of data points. As this is a 
complicated joint distribution of α and η, it is not possible 
to obtain independent and identically distributed samples 
directly from this unnormalized kernel. We use the 
Metropolis Hastings (MH) algorithm which is a type of 
iterative Markov Chain Monte Carlo (MCMC) technique 
[3]. The parameters α and η are calculated as sample 
averages of realizations of Markov chains, so one has to 
ensure that the Markov chain has converged before 
drawing the samples. To generate the random samples of 
α and η, a “proposal density” is used, given the samples 
from previous iteration. Following proposal density is 
suggested in [9]. 

, ′| ,
1 	

 

Here , ′ are the new samples and ,  are the 
previous samples. In MH algorithm first we draw samples 
from the proposal density. This sample is then accepted or 
rejected as per the acceptance probability given by: 

, , , 1,
, , | ,⁄

, , | ,⁄
 

There is a typical advantage of MH algorithm that we 
need not consider the full conditionals because the 
normalizing factors cancel in the ratio of acceptance 
probability equation. For more details on the MH 
algorithm please refer to [3] and [9].  

RESULTS 
After running 25K iterations of the MH algorithm on 

the posterior density, we reject the initial 5000 samples to 
allow the Markov chain convergence. Next we plot the 
remaining samples to get a 3D plot of the posterior. Fig. 5 
shows the samples (green dots) obtained from the MH 
algorithm, and a connecting surface is plotted.  

To obtain the values of α and η from the posterior, we 
look at the samples obtained from the MH algorithm. Fig. 
6 and Fig. 7 show the samples of α and η and their 
histograms. 

As seen, the subsequent sample generation looks 
stationary [5], thus we can say that the Markov chains 
have converged. Also looking at the histograms in Fig. 7, 
they resemble the normal distribution, thus the means of 
the samples represent the meaningful inference for α and 
η parameters.  

We obtain the following values of α and η for the 
posterior: 

	 	0.6327, 	 	1.2225                    (5) 

 

Figure 5: Posterior density for α, η. 

 

Figure 6: ,  samples from MH algorithm. 

 

 

Figure 7: ,  samples’ histogram from MH algorithm. 
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DISCUSSION  
Fig. 8 shows the cumulative failure distribution 

function of the prior, data and posterior distributions for 
Weibull using the parameters in Eq. 2, Eq. 4 and Eq. 5. 
According to our discussion on choosing the 
hyperparameter β, we expressed low confidence in the 
value of alpha being 1. This can be seen in Fig. 8 where 
the posterior shape is more like the data distribution, i.e. 
the relative strength of the data distribution is much more 
than the prior distribution.  

 

 

Figure 8: Cumulative failure distributions for β=3. 

To illustrate the concept of relative strength of prior and 
data, we increase the confidence in prior by increasing the 
hyperparameter value. Fig. 9 shows the prior, data and 
posterior distribution for β equal to 15.  

 

 

Figure 9: Cumulative failure distributions for β=15. 

The prior strength is now increased that is apparent on 
the posterior, which is now closer to the prior as 
compared to Fig. 8. The posterior parameters for β = 15   
are a higher value of 	 	0.6404 and lower value of 
	 	 	1.1249. For our analysis, we uphold the value of β 
= 3, because it represents our high confidence in the 
actual machine failure data, with a mild influence of the 
MC model results.  

CONCLUSION 
RHIC beam permit system has been extensively studied 

for its reliability characteristics. The MC model provides 
many insights to the reliability performance of the BPS. 
This includes the marginal probability values of various 
system level catastrophic events, marginal probabilities of 

failure modes of individual modules, importance of each 
component with respect to its failure rate and structural 
placement, paths of failure propagation and bottlenecks in 
the system. This helped understand very fine failure 
dynamics of the beam permit system. However it uses the 
military handbook which is quite conservative in its 
approach. 

On the other hand, the historical failure data of BPS 
provides us with the actual failure aspects of the system. 
This helps to quantify the overall system failure 
distribution that emerged as a Weibull failure distribution 
with decreasing failure function. It represents the real 
survival behavior of the BPS. However due to high the 
reliability of BPS, we have a small data of only 16 
failures points till date, which does not allow us to take a 
profound look into the system. 

Thus it is necessary to emphasize the importance of   
both the information sources. Bayesian paradigm 
facilitates an excellent way to coalesce these two to 
furnish the most informed inference [10] about the BPS 
reliability, with flexibility to regulate the influence of 
either of the information sources according our 
confidence in them.  
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