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Abstract
This paper describes the optimization work carried out

to improve the performance of the LNLS UVX storage
ring  fast  orbit  feedback  system.  Black-box  system
identification  techniques  were  applied  to  model  the
dynamic  behavior  of  BPM electronics,  orbit  correctors,
communication  networks  and  vacuum  chamber  eddy
currents.  Robust  control  techniques  were  employed  to
analyze  and  optimize  closed-loop  performance  and
robustness.

INTRODUCTION

The  LNLS  storage  ring  FOFB  system  has  been
operating  for  users  since  March  2013.  RMS  stability
integrated from 1 Hz to 500 Hz is 1% beam size in the
horizontal  plane and 6% for vertical  in worst  case (1%
coupling is assumed).  Disturbances  originating on floor
vibrations account for less than 0.2% RMS in horizontal
plane  and  2.5%  RMS  in  vertical  plane.  The  dominant
disturbance source to be attenuated by the FOFB system
is  Elliptically  Polarizing  Undulator  (EPU)  gap/phase
variations,  while  orbit  disturbances  caused  by  power
supply  ripple  (up  to  5%  beam  size,  in  vertical  plane)
should  not  be  significantly  amplified.  The  following
sections  describe  the  approach  adopted  to  optimize  the
system performance and robustness.

HARDWARE DESCRIPTION

The LNLS FOFB system is a multiple-input multiple-
output  feedback  control  system  comprising  48 sensors
(24 beam  position  readings  per  transverse  plane)  and
42 actuators (18 horizontal  orbit  correctors + 24 vertical
orbit correctors) running at 3.125 kHz update rate.

The  data  acquisition  and  control  system hardware  is
composed of one central real-time controller (PXI-8108)
and  12 data  acquisition  nodes  (CompactRIO-9144
EtherCAT  chassis)  with  analog  and  digital  interface
modules.  Each acquisition/actuation node has  an FPGA
available  for  digital  filtering,  currently  used  for
decimation  (from 100 kS/s  oversampling  to  3.125 kS/s)
and  dynamic  response  compensation  for  each  BPM
reading and orbit correct current setpoint. Two daisy chain
EtherCAT networks are used as deterministic network for
sensor and actuator data distribution to/from the controller
and  provides  synchronization  between  all  nodes  below
1 μs.  Bergoz  MX-BPM  electronics  are  used  for  RF
signals  processing  and  delivers  analog  signals
proportional  to  the  beam  position.  In-house  developed
power supplies with analog interface and analog current
regulator (Proportional-Integral type) are used to drive the
orbit corrector magnets [1].

SYSTEM IDENTIFICATION

Figure  1  depicts  the  general  structure  adopted  for
modeling the LNLS FOFB system using Laplace and Z
transforms.

Figure 1: LNLS FOFB model structure.

The  description  of  transfer  functions  and  signals  are
given below:

• Gapj(s): power supply + magnet impedance response

of the  j-th corrector  of the  p transverse plane (h =
horizontal, v = vertical).

• Gppj(s):  magnet  core  +  vacuum  chamber  magnetic

field  response  (eddy  currents)  to  coil  current
variations on the  j-th corrector of the p plane.

• Hpi(s): BPM electronics response of the i-th BPM of

the p plane.
• Hd(z):  decimation  filter  response  (discrete-time)  at

lower data rate (FOFB update rate) + communication
network  delay.  Identical  response  for  both  BPM
position reading and orbit corrector current reading.

• Mp1p2: static orbit response matrices (p1 plane BPMs

and  p2 plane  orbit  correctors).  Horizontal  and
vertical  plane  matrices  are  represented  by  Mhh and
Mvv,  respectively.  Crosstalk  matrices  (off-diagonal)
are represented by Mhv and Mvh.

• upj: orbit corrector current setpoint  (j-th corrector, p

plane).
• u'pj: orbit corrector current reading (j-th corrector,  p

plane).
• ypi: actual beam position (i-th BPM, p plane).

• y'pi: measured beam position (i-th BPM, p plane).

For black-box system identification the available ports
for experiments comprise the discrete-time input signals
upj and output signals  u'pj and  y'pi, with 320 μs sampling
period.  Hd(z) transfer  function  is  accurately  known  a
priori,  since  it  is  fully  determined  by  CIC  decimation
filters  (factor  32 decimation  rate,  2 sections  and
1 differential  delay)  implemented  in  the  nodes'  FPGAs
and one-cycle time delay due to the EtherCAT network
data distribution.______________________________________________
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Static  orbit  response  matrices  are  readily  obtained
through the traditional method of small amplitude (tens of
μrad)  bipolar  steps  on  each  orbit  corrector.  For  all
purposes  of  this  paper,  Mp1p2 will  be  assumed  to  be
known,  including  their  variations  due  to  known  optics
changes: ±2% tune shifts and extreme values of insertion
device  gap  and  phase  configurations  during  normal
operation.

Experiments

After experimenting with different  types of excitation
signals (white noise, sum of sinusoids, PRBS), a choice
has  been  made  for  the  pseudo-random  binary  signal
(PRBS)  due to its appropriate spectral content, easiness
of use and periodicity enabling time-domain average of
the  experimental  data.  Special  care  has  been  taken  to
choose the sequence length in such a way that no major
spectral  line  of  the  beam  position  readings  and  orbit
corrector current readings (mainly due to magnets power
supply  ripple)  aligned  with  some  of  the  excitation
harmonics. Figure 2 shows the chosen excitation pattern
(62 points sequence, 750 Hz bandwidth, 9.2 μrad peak-to-
peak  excitation) in  time-domain and frequency domain.
For illustration, the beam position spectrum of a particular
BPM is plotted in background.

Figure 2: PRBS excitation signal of an orbit corrector and
corresponding reading in a beam position monitor.

Each corrector  was excited independently in order  to
simplify the identification process.

Input-Output Datasets

For orbit correctors,  42 datasets with 1 input (current
setpoint) and 1 output (current  reading) each were built
from the acquired data. These datasets allowed black-box
identification  of  discrete-time transfer  functions   in  the
form  Ga' pj(z )=Ga pj(z)Hd(z ) ,  that  is,  the  combined
response of power supply, magnet impedance, decimation
filter and network delay.

For BPMs, 48 datasets with 1 input (filtered corrector
current  setpoint)  and  1  output  (beam  position  reading)
each were built,  where the orbit corrector  to be excited
was  chosen  as  the  corrector  which  produced  the
maximum static response at the BPM to be identified. The
input data was then filtered by the identified model of the
chosen orbit corrector resulting in the identification of the
transfer  function  H ' pi (z)=H pi(z )Gp pj (z ) ,  that  is,  the
combined response of the i-th BPM and the magnet core

plus vacuum chamber response of the j-th orbit corrector.
Since  the  magnet  core  and  vacuum  chamber  of  all
correctors  were  known  to  have  bandwidth  higher  than
1.25 kHz,  that  is  above the  frequency  range  of  interest
(500 Hz), the Gp pj( z)  dynamics were neglected.

Black-box Identification

Among  several  existing  parametric  black-box system
identification  methods,  the  Autoregressive  model  with
Exogenous  Inputs  (ARX)  was  chosen  [2].  In  order  to
avoid  biasing  on  the  identification  parameters,  each
dataset was averaged in time-domain:  the output signals
were  segmented  in  161 periods  of  62 samples
(approximately  3.2 s  of  data),  being  the  first  segment
discarded  to  remove  the  transient  dynamics.  From  the
remaining   segments,  80 segments  were  averaged  and
resulted  in  62-sample  long  estimation  dataset.  Another
80 segments were averaged to form the validation dataset.
Orbit  corrector  models  of  order  8  (16 coefficients)  and
delay of 3 sample times were used. BPM models of order
2 (4 coefficients) and delay of 1 sample time were used.

Figures 3a and 3b show the frequency response of the
identified  models  for  BPMs  and  orbit  correctors,
respectively.

(a) (b)

Figure  3:  Frequency  responses  of  identified  (a)  BPM
models, and (b) orbit corrector  models.  Hd(z)  frequency
response is plotted in dashed black curve for comparison.

The identified models presented normalized root mean
squared errors (NRMSE) above 91% and 97% for BPMs
and orbit correctors, respectively (100% meaning perfect
fit and 0 meaning the fit is as good as of a straight line
equal to the mean of the data). Residual analysis  showed
no statistically significant correlation between estimation
errors  (residues)  and  the  excitation  signal  for  all  the
identified models.

CONTROL DESIGN

A  signal-based  H2/H∞ optimal  control  approach  has
been  adopted  when  designing  the  FOFB  controller.  A
fixed-structure controller requirement was imposed by the
available hardware,  making the synthesis of an optimal
controller  not  possible  by  classical  tools  or  not
computationally  efficient  [3].  Robustness  was  analyzed
using  uncertain  plant  subsystem  transfer  functions  and
worst-case singular values frequency response plots.
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Weights

The  key  element  of  a  signal-based  control  design
approach  is  to  establish  inputs,  outputs  and  transfer
function  weights  which  directly  express  realistic
disturbances,  sensor  noise,  actuator  noise  and
performance  objectives  [4].  Closed-loop optimization is
then performed based on an augmented plant as illustrated
in Fig. 4.

Figure 4: Augmented plant for signal-based control.

The  blocks  G(z) and  H(z) are  the  plant  and  sensor
matrix transfer  functions,  respectively, and  Wd(z),  Wn(z)
and  Wz(z) are  the  weights  for  disturbance,  noise  and
performance objectives.

In  the  case  of  the  LNLS  FOFB  system,  the  Wd(z)
transfer  function matrix was chosen to reflect  the main
electron beam disturbances on the UVX storage ring: (i)
variation of EPU gap (ramp type); (ii) variation phase of
EPU phase (ramp type); (iii) mains ripple from 60 Hz to
360 Hz  (second  order  peak  filters).  By  means  of
experiments, the orbit distortion profiles of each of these
disturbances were obtained.

Wn(z) was chosen as a diagonal transfer function matrix
where  each  element  is  the   worst-case  (lowest  beam
current on operation conditions) standard deviation of the
corresponding  beam  position  measurement  broadband
noise integrated over the entire bandwidth.

Wz(z) was  chosen  also  as  a  diagonal  matrix  transfer
function where each element is a first-order low pass filter
with a given bandwidth and gain given by the inverse of
the  nominal  beam  size,  meaning  all  beamlines  are
considered to be equally sensitive to electron beam orbit
disturbances up to the bandwidth.

Actuator  noise  and  amplitude  range  limitation  were
both considered to be negligible.

Performance and Robustness Metrics

FOFB performance  and  robustness  were  assessed  by
means  of  H2 and  H∞ closed-loop  system norms  of  the
augmented plant, with negative feedback from y' to u by a
controller  with  C(z) transfer  function.  The  chosen
performance channel  was the summation of disturbance
rejection and sensor noise transfer functions, with inputs
d and n and output z, denoted by ‖T d , n→ z‖2 , for which the
H2 norm  has  direct  correspondence  with  the  RMS-
integrated  criterion  typically  used  to  analyze  FOFB
system performance. The chosen robustness channel was
the sensitivity transfer  function at  y,  denoted by  ‖Sy‖∞ ,
for  which  the  H∞ norm  simply  means  the  worst-case
multivariable  gain  from  the  disturbances  to  the  actual
beam position outputs. Despite being an indirect measure
of robustness, it has straightforward practical meaning.

The  H2 and  H∞ norms were scaled in such a way that
values  below  unity  were  said  to  satisfy  the  FOFB
requirements. To this end, Wz was divided by a factor 0.1
to  reflect 10% beam size stability requirement and by the
square root of the number of beam position measurements
(24, for each plane) in order to convert the 2-norm of the
output vector to RMS value. Each input of Wd is divided
by its expected maximum value, so that an unitary input
means the worst-case disturbance. The sensitivity transfer
function  was  divided  by  the  allowed  maximum
amplification gain, √2  (3 dB ).

Model Uncertainty

Despite adopting black-box system identification when
modeling  each  BPM and  orbit  corrector  dynamics,  the
transfer  functions were  assumed to have some level  of
uncertainty. In order to take this information into account
when  analyzing  the  control  loop,  classes  of  similar
responses  have  been  established  from visual  inspection
followed by the determination of lower and upper bounds
of the frequency responses through an input multiplicative
uncertainty model of the type:

(1)

where Δ(z) is a norm-bounded uncertain complex transfer
function ( ‖H (Δ)‖∞<1 )  and  W(z) is  a  weighting transfer
function  of  order  1. Figures  5a  and  5b  show  the
established frequency response classes.

(a) (b)

Figure  5:  Classes  of  frequency  responses  of  (a)  BPM
models, and (b) orbit corrector  models.  Hd(z)  frequency
response is plotted in dashed black curve for comparison.

Control Optimization

Although  mature  frameworks  for  designing  optimal
controllers based on H2 and H∞  norms minimization exist
(e.g. LQG,  LMIs,  µ-synthesis),  these  methods  are  not
directly  suitable  for  the  LNLS FOFB system since  the
controller  has  a  fixed-structure.  For  such  class  of
controllers, optimizing the system norms would typically
require  nonconvex  and  nonsmooth  optimization
techniques. Although an efficient and scalable nonsmooth
optimization  method for  solving  this  class  of  problems
exists  [3]  and  is  available  in  Matlab  Robust  Control
Toolbox since version 2010b, the present work has taken
a simpler approach of exhaustive computation of system

Gu

W d W z

H

W n

d

n

y
y'

z

Guncertain(z)=G nominal(z )(1+W (z )Δ(z ))
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norms  for  a  grid  of  controller  parameters.  The  next
section describes simulation results which were obtained
following this approach.

SIMULATION RESULTS

The feedback controller  C(z) on the simulated control
loops had the following structure:

(2)

where MC is a decoupling matrix, K is the controller gain
and  Ts is the sampling time (320 µs).  MC is the pseudo-
inverse  of  the  static  orbit  response  matrix  applying
Tikhonov  regularization  as  described  in  [5, 6].  The
pseudo-inverse  singular  values  σ̂i  have  the  following
relation  with  the  singular  values  of  the  orbit  response
matrix σi :

(3)

where μ is a real parameter to be tuned.

The  closed-loop  norms  ‖T d , n→ z‖2  and  ‖Sy‖∞  of  the
augmented plant (nominal case, with no uncertainty) were
calculated  for  different  values  of  K and  μ for  three
different bandwidths in the  Wz(z) transfer function. Orbit
correction on horizontal and vertical planes were treated
independently. Figure 6 shows the results for each value
of K,  μ and bandwidth. The optimal controllers are those
with minimum value of  ‖T d , n→ z‖2  meeting the constraint
‖Sy‖∞<1 , as summarized in Table 1.

(a) (b) (c)

(d) (e) (f)

Figure 6:  ‖T d , n→ z‖2  costs meeting the ‖Sy‖∞<1  constraint
for  each  plane  and  beamline  bandwidth:  (a)  horizontal,
25 Hz; (b) horizontal, 50 Hz; (c) horizontal, 100 Hz; (d)
vertical, 25 Hz; (e) vertical, 50 Hz;  (f) vertical, 100 Hz.

Table 1: Summary of optimal controllers.

Plane BW ‖T d , n→ z‖2
‖Sy‖∞ K μ

H 25 Hz 0.0855 0.7467 19.0 4.17e-1

H 50 Hz 0.1271 0.7294 10.5 2.81e-1

H 100 Hz 0.1710 0.7293 10.5 4.17e-1

V 25 Hz 0.7837 0.9746 111 1.17e-2

V 50 Hz 1.160 0.8585 61.6 5.30e-3

V 100 Hz 1.466 0.8480 61.6 7.88e-3

Figure  7  shows  the  frequency-dependent  singular
values of the sensitivity transfer function of the system for
each controller in Table 1. The uncertainty on dynamics
and  orbit  response  matrix  is  taken  into  account.  No
closed-loop  sensitivity  function  of  the  optimized  loops
significantly  exceeds  the  3  dB  amplification  reference
line,  indicating  the  uncertainties  do  not  substantially
degrade  robustness.  This  was  expected  since  the
differences  on  dynamics  are  significant  only  for
frequencies above the achieved closed-loop bandwidths.

(a) (b)

Figure 7: Singular values plot of sensitivity functions with
uncertain plant: (a) Horizontal plane (b)Vertical plane.

CONCLUSION

A complete approach to identify the performance limits
of the LNLS FOFB system has been presented, from the
system  identification  to  the  control  loop  optimization.
From  this  study  it  has  been  concluded  that  the  LNLS
FOFB  system  is  limited  in  about  15  Hz  closed-loop
bandwidth  (~25 Hz  0 dB  crossover  on  sensitivity
function), the main limitation being a ~1.5 ms delay due
to communication network, decimation filters and BPMs
responses.  Due  to  the  effect  of  noise  amplification  for
frequencies  above  the  crossover,  higher  control  loop
bandwidths improves performance only when beamlines
are  less  sensitive  to  electron  beam  motion  at  higher
bandwidths. The simulation results herein presented still
need to be validated against experimental data.
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