

Effective End-to-End Management of Data Acquisition and Analysis for X-Ray Photon Correlation Spectroscopy

F. Khan*, J. P. Hammonds, S. Narayanan, A. Sandy, N. Schwarz Advanced Photon Source Argonne National Laboratory, Argonne IL 60439 U.S

End-to-End Management

Managing scientific operations from acquisition to analysis through automated software.

Faster turn-around time between acquisition and analysis.

Operational efficiency of the scientific apparatus in a multi-user environment.

Combining components developed over time by different teams.

Outline

System overview

Analysis pipeline

Acquisition

Analysis - MapReduce

Analysis - Data fitting

Data format (HDF5)

Automation

Performance

Conclusion

System Overview

Acquisition

CCD-based data acquisition system

Operating at 60 frames/s producing I28 MB/s raw data

Hardware compression to reduce upstream bandwidth

Done using estimation of average dark signal and noise

Acquisition system overview¹

^{1.}T. Madden et. al. "Firmware Lower-Level Discrimination and Compression Applied to Streaming X-ray Photon Correlation Spectroscopy Area-Detector Data," Rev. Sci. Instrum. 82. 075 | 09 (2011).

Analysis

XPCS¹ Technique : Auto-correlation² of pixel intensities over different time (Tau) and length (q) scales

Auto-correlation is computation intensive but easy to parallelize problem

1. XPCS is done at Sector 8-ID and have wider usage, e.g., I. M. Sikorski, A.R. Sandy, and S. Narayanan, ``Depletion-Induced Structure and Dynamics in Bimodal Colloidal Suspensions," Phys. Rev. Lett. 106. 188301-1 (2011). 2. B. Tieman, S. Narayanan, A. Sandy and M. Sikorski, "MPICorrelator: A parallel code for performing time correlations," Nucl. Instrum. Method A 649(1), (2011) 240.

$$g_2(\tau, q) = \frac{\langle I(t, q)I(t + \tau, q)\rangle}{\langle I(t, q)\rangle^2}$$

MapReduce

Parallel processing of large datasets using larger number of computer nodes (cluster).

Computations based on "map" and "reduce" phase.

map - Data is split into smaller sub-problems usually with a unique identifier per problem.

reduce - Output from individual sub-problems is combined to form the final result.

Apache Hadoop¹ provides an open source implementation of MapReduce² along with a distributed storage system.

^{1.} http://wiki.apache.org/hadoop

^{2.} Dean and S. Ghemawat, "MapReduce: simplified data processing on large clusters," Communications of the ACM 51(1), (2008) 107.21.

Effective end-to-end management of data acquisition and analysis for XPCS - ICALEPCS 2013

Analysis - MapReduce

Analysis - Data Fitting

Least square fitting

Individual g2 (y-axis) values for different time (Tau, x-axis) and length (q) scale.

Fitting is a done as a last stage in processing.

Pipeline launches Matlab script on user's desktop for visualizing the results of fitting.

Analysis Automation

A thin wrapper around user process

A common data format

Client starts the pipeline analysis by constructing a JMS message containing:

input data^{1,2} - A HDF5 file with input parameters, e.g., location of Hadoop file to process

route - specify individual processing step

Next stage is triggered by passing a JMS³ message between the current and the next stage.

- 1. Hierarchical Data Format version 5 (HDF5), 2000-2010. http://www.hdfgroup.org/HDF5.
- 2. The Scientific Data Exchange, http://www.aps.anl.gov/DataExchange.
- 3. Apache ActiveMQ, http://activemq.apache.org based implementation of JMS standard is used.

Performance

Acquisition

60 Hz compressed data

Analysis - MapReduce

I-3 minutes for most datasets.

Running multiple analysis can reduce this time even further.

Pipeline - Backend

Based on ActiveMQ - an industry standard messaging backbone.

Capable of dispensing a couple thousands of messages per second (depending upon the environment).

MapReduce analysis results

Size	Frames	Time
45 GB	120, 000	10 minutes
11 GB	20, 000	9 minutes
0.8 GB	80, 000	3 minutes
0.8 GB	20, 000	2.5 minutes
0.4 GB	4,000	1 minutes

Conclusion

Near-real-time analysis using

Parallel analysis algorithms and

A state-of-the-art messaging backend

Maximizing utilization of the equipment

Lowering turn-around time between acquisition and analysis

Future challenge

Ability of the modern detectors to take images at **faster rate** and **higher resolution**.

Thanks

Questions?