

Reimplementing the bulk data system with DDS in ALMA ACS

Bogdan Jeram(bjeram@eso.org) European Southern Observatory

G. Chiozzi, R. Javier Tobar, ESO, Garching bei Muenchen, Germany R. Amestica, NRAO, Charlottesville, VA, U.S.A M. Watanabe, NAOJ, Tokyo, Japan

14th ICALEPCS, October 7-11, 2013

= !! 🐼 🛌 != !! = !! = !! = !! = !! !! !!

Summary

- ALMA & ACS
- Bulk data overview
- The "old" bulk data based on CORBA A/V
 - limitations
- The "new" bulk data based on DDS
 - Development process
 - Challenges
 - Improvements
- Conclusions

ALMA&ACS

- Atacama Large Millimeter/submillimeter Array
 - Collaboration between Europe, North America and East Asia organizations
 - 66 antennas: 54x12m + 12x7m
 - At 5000m on Chajnantor plateau in Atacama desert, Northern Chile
- ALMA Common Software
 - Container-component, CORBA based, middleware
 - Develop distributed (control) systems

- ACS service for reliable and concurrent streaming of high volumes of (astronomical) data
 Used in two configurations:

 Many senders to one receiver
 One sender to many receivers - multicast

 Used by 6 ALMA SW sub-sytems
- Total peak data rate: 64MBytes/sec

Deployment - old BD

Deployment - old BD

Deployment – new BD

14th ICALEPCS, October 7-11, 2013

- Based on: TAO Audio/Video Streaming CORBA service implementation
- Limitations:
 - insufficient robustness in case of application problems
 need of a dedicated machine (w/ many NICs) for distributor
 - only one stream per component => set of distributor/receiver components per array
 - no multithread-safety => problem with parallel arrays/streams
 - "the one & only" implementation w/o support
 not fit for changed/new requirements

Critical phase – early science operation Carful planning Switch between old and new BD

Critical phase – early science operation Carful planning

Switch between old and new BD

Critical phase – early science operation

Switch between old and new BD

Critical phase – early science operation Carful planning Switch between old and new BD

Carful planning

Critical phase – early science operation

Switch between old and new BD

2011

14th ICALEPCS, October 7-11, 2013

= || 💿 🛌 🖶 🛏 || = || = || = 💷 💷 👫 🕒

Critical phase – early science operation Carful planning Switch between old and new BD

Critical phase – early science operation Carful planning Switch between old and new BD

Critical phase – early science operation Carful planning Switch between old and new BD

March 2013

2011

14th ICALEPCS, October 7-11, 2013

BDNT- development process

- Reviewed requirements
- Investigated possible technologies => DDS:
 - · Well established standard
 - Several implementations w/ (commercial) support
 - Used in institutes/industry/military
 - Satisfy our requirements: reliable multicast, …
- Prototypes: OpenDDS, RTI, OpenSplice and CoreDX
- Selected specific implementation => RTI DDS:
 Very stable/documented/supported
- Developed BDNT
- Ported applications: 6 sub-systems
- Tested in STEs and on site => installed

BDNT- benefits

- Improved error handling => improve stability & robustness
- Simpler and more intuitive API
- Reliable multicast instead of distributor & more streams per component => simplified deployment
- Built-in "support" for trouble shooting:
 - Early detection of problems: receiver processing throughput,...
 - Logs details control: configurable levels for detailed protocol diagnostic and statistics
- Generic sender & receiver => synthetic test

Challenges

Configuration of network infrastructure for DDS (UDP multicast)

- IGMP
- Network bonding
- Tuning of DDS QoS (TTL,...)
- Discovery mechanism
- High site -> low site (30km) to 3 receivers: 900Mbit/s
- "Mixing" underlying protocol of RTPS:
 - "Reliable" multicast UDP for one to many
 - TCP for many to one
- BD chain: proper deployment (of receivers), ...

Synthetic test example

Problem multicasting from a machine with network bonding (2 NICs) to 3 machines with a single NIC

Problem solved by DDS QoS tuning

14th ICALEPCS, October 7-11, 2013

= || 💿 🛏 ∺ 🕂 = || = || = 0 💶 🖬 🕂 💥 🔒

Conclusions

- In operation since March 2013
- Not yet tested at "full speed" in operation.
 Only with: 54 out of 66 antennas
 50% of the expected CORR data rate
- Big improvement in stability and availability of the whole SW: no need to restart the whole SW,...
- DDS is mature enough and the RTI implementation is very stable, well documented with good support
- Good understanding of what is going one in the whole BD chain, including applications, is necessary
- It is essential to have the right tools for troubleshooting

14th ICALEPCS, October 7-11, 2013

__ || 🖸 |_ ;= ;= ;= || = || = || __ 💷 💷 := != !! 💥 🛀

14th ICALEPCS, October 7-11, 2013

= || 💿 ⊾ 🖶 🛏 || = || = || = 🚺 📼 🖶 🕂 🕌