
The Mantid Project:
Notes from an International Software

Collaboration

Nick Draper

Tessella

www.mantidproject.org

Overview

• Mantid Introduction

• A Selection of Risks

• Management strategies

• Conclusion

Project Goals

• Goals
– Consolidate the data reduction/analysis

software for neutron scattering without
restricting the needs of the instrument
scientists

• Key requirement
– Create a Data Analysis framework

• not instrument or technique/dependent

– Cross-platform
• Windows, Linux, Mac

– Easily extensible
– Open source

A Selection of Risks

• Lasting engagement with a large
number of stakeholders

• Design needs to support flexibility for
future needs

• Technical single point of failure

• Development continuity across the
team

• Larger development teams are less
efficient

• Testing and deployment takes time &
Active development can affect
robustness

Lasting engagement with a large number of
stakeholders

Users

Scientific
Steering

Committee

Development
Team

Users

Scientific
Steering

Committee

Development
Team

SNS/HIFR ISIS

Project Management
Board

• Project
Organisation

• Active project
sponsors

• Frequent releases

• Responsive to
change

Design needs to support flexibility for future
needs

• Separation of Data and Algorithms

• Encapsulated “User Code” in specific places
– Algorithms

– Workspaces

• Use of well designed interfaces to allow generic use
of components

• Reuse of existing components

• Careful memory management when handling large
datasets

Future Instrument
specific UI

Architectural Design - Overview

Mantid Framework

Python
Command line &

Scripting
interface

MantidPlot
Graphing and

analysis

RAW data files

NEXUS data
files

Future Instrument
specific UI

Instrument log
files

API
Workspaces

DAE direct
access

Algorithms

Future Instrument
specific UI

Architectural Design - Overview

Mantid Framework

Python
Command line &

Scripting
interface

MantidPlot
Graphing and

analysis

RAW data files

NEXUS data
files

Future Instrument
specific UI

Instrument log
files

API
Workspaces

DAE direct
access

Algorithms

User Defined

Future Instrument
specific UI

Architectural Design - Overview

Mantid Framework

Python
Command line &

Scripting
interface

MantidPlot
Graphing and

analysis

RAW data files

NEXUS data
files

Future Instrument
specific UI

Instrument log
files

API
Workspaces

DAE direct
access

Algorithms

User Defined User Defined

Plug in extensions

GUI

Framework

Utility

Algorithm Dialogs
Custom Interfaces

Custom Menus

Python scripts & libraries

Workflow Algorithms

Algorithms

Unit Conversions

Fit Functions
Cost Models
Constraints
Minimizer

Workspaces

Archive Searching
LiveData Listeners

Data Catalogs

Preventing single points of failure

• No “Code Ownership”
– Functionality protected via unit tests

• Mobile development talent

• Sub project teams to focus on significant
developments

• Knowledge transfer
– Daily & focused skype meetings

– Code reviews

– Architectural and detailed design documentation

– Developer documentation

– Annual developer meetings

Development continuity across the team

• Coding standards
– Sensible

– Agreed

• Shared code ownership

• Support within the team
– Mentoring

– Training

• Design and code reviews

• Developer meetings

Larger development teams are less efficient

• Automate repetitive tasks
– Saves time

– Ensures they happen

• Optimize meeting time
– Control attendees at meetings

– Use the right technology
• Daily skype chat meetings

– Ensure the right people talk together

• Use tools to prevent duplicated work and missed
tasks
– Development

– Testing

Continuous Integration Environment

GitHub
Repository

Build + unit test
-Linux (RHE & Ubuntu)
-Mac OSX
-Windows 32
-Windows 64

Developers

trac
Issue

tracking
system

Mantid Project Wiki

Automated
System test

Deploy to
Download site

Testing and deployment takes time &
Active development can affect robustness

• Automated Unit Testing

– Test individual components

– Over 6,000 tests

– Fast – just a few minutes

– Run on all platforms on commit

– Rapid feedback to developers

• Automated System Tests
– Test complete workflows

– Compare numerical results with stored examples

– Over 150 tests

– Slow – minutes to hours

– Run on all platforms daily

– Feedback to all developers

Manual Testing

•Each change reviewed and tested
•Whole development team, every week
•Each developer tests other peoples work
•Communication and knowledge sharing

Developer
Testing

•Usability and general usage tests
•Each environment tested
•Low coverage

Unscripted
testing

•Only once well tested & interactive development
•Instrument scientists
•Very high quality feedback & future requirements
•Generate confidence
•Must be well managed

User
Testing

Releases
D

ev
el

o
p
m

en
t • Automated

release
•Daily
• If system tests

pass
• Useful
•Not stable

Fu
ll

R
el

ea
se

•Quarterly
• Full manual

testing
• Full release

notes
•Wide

announcement
• Stable

Pa
tc

h

• 2-4 weeks after
a full release

• Targeted
improvements
& fixes

• Low risk
• Targeted

testing
• Code review
• Stable

Conclusion

• Software is mission critical to modern neutron
facilities
– High performance

– Reliable

– Leading edge

– Responsive to change

– Maintainable

– Well documented

• To get these a project needs
– Vision

– Resource

– Stability

– Scientific and Technical Leadership

– Talented developers

Conclusion

• A facility alone can provide these needs
– Although many are not used to devoting their resources

toward software developments.

• Working together can be more productive than the
sum of the parts.

	The Mantid Project: �Notes from an International Software Collaboration�
	Overview
	Slide Number 3
	A Selection of Risks
	Lasting engagement with a large number of stakeholders
	Design needs to support flexibility for future needs
	Architectural Design - Overview
	Architectural Design - Overview
	Architectural Design - Overview
	Plug in extensions
	Preventing single points of failure
	Development continuity across the team
	Larger development teams are less efficient
	Slide Number 14
	Testing and deployment takes time & �Active development can affect robustness�
	Manual Testing
	Releases
	Conclusion
	Conclusion

