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¥ Overview

Mantid Introduction
- A Selection of Risks
Management strategies
- Conclusion
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¥ Project Goals

Goals

- Consolidate the data reduction/analysis
software for neutron scattering without
restricting the needs of the instrument
scientists

Key requirement
- Create a Data Analysis framework
- not instrument or technique/dependent
- Cross-platform
- Windows, Linux, Mac
- Easily extensible
- Open source
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¥ A Selection of Risks

Lasting engagement with a large
number of stakeholders

Design needs to support flexibility for ‘u
future needs

- Technical single point of failure

Development continuity across the
team __
Larger development teams are less (IS Tel 2N
efficient |
. Testing and deployment takes time &

Active development can affect
robustness
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Lasting engagement with a large number of

stakeholders
ISIS SNS/HIFR
PrOJ e Ct U Users
Organisation
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SPONSOrS

Project Management
Board

Frequent releases

Responsive to
change
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~ [ Design needs to support flexibility for future
needs

. Separation of Data and Algorithms

Encapsulated “User Code” in specific places
- Algorithms
- Workspaces

- Use of well designed interfaces to allow generic use
of components

Reuse of existing components

. Careful memory management when handling large
datasets
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Architectural Design - Overview

Python
Command line & |nstrument log
ipti files
ripting
MantidPlot
Graphing and
DAE direct
access
Future Instrument [
specific Ul
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Architectural Design - Overview

Python
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Scripting
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Architectural Design - Overview

Python
Command line & Instrument log
ipti files
Scripting

RAW data files

MantidPlot
Graphing and
NEXUS data
files

DAE direct N

access

Future Instrument []
specific Ul
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Plug in extensions

Algorithm Dialogs
Custom Interfaces
Custom Menus

Python scripts & libraries
Framework

Workflow Algorithms Workspaces
Algorithms

Fit Functions _ _
Cost Models Archive Searching

LiveData Listeners
Data Catalogs

Unit Conversions

Utility

Constraints
Minimizer
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¥ Preventing single points of failure

No “Code Ownership”

- Functionality protected via unit tests
Mobile development talent

- Sub project teams to focus on significant
developments

Knowledge transfer

- Daily & focused skype meetings

- Code reviews

- Architectural and detailed design documentation
- Developer documentation

- Annual developer meetings
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¥ Development continuity across the team

Coding standards ‘ Team Work
- Sensible
- Agreed

Support within the team __
- Mentoring
- Training i
Design and code reviews 2
Developer meetings b
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Larger development teams are less efficient

- Automate repetitive tasks
- Saves time
- Ensures they happen
- Optimize meeting time
- Control attendees at meetings

- Use the right technology
- Daily skype chat meetings

- Ensure the right people talk together

Use tools to prevent duplicated work and missed
tasks

- Development

- Testing
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¥ Continuous Integration Environment
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Testing and deployment takes time &
Active development can affect robustness

- Automated Unit Testing
- Test individual components
- Over 6,000 tests
- Fast - just a few minutes
- Run on all platforms on commit
- Rapid feedback to developers

.- Automated System Tests
- Test complete workflows
- Compare numerical results with stored examples
- Over 150 tests
- Slow - minutes to hours
- Run on all platforms daily
- Feedback to all developers
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Manual Testing

- Each change reviewed and tested

- Whole development team, every week
- Each developer tests other peoples work
- Communication and knowledge sharing

- Usability and general usage tests
- Each environment tested
- Low coverage

- Only once well tested & interactive development

- Instrument scientists

- Very high quality feedback & future requirements
- Generate confidence

- Must be well managed
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Releases
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Conclusion

- Software is mission critical to modern neutron
facilities
- High performance
- Reliable
- Leading edge
- Responsive to change
- Maintainable
- Well documented

- To get these a project needs
- Vision
- Resource
- Stability
- Scientific and Technical Leadership
- Talented developers
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¥ Conclusion

- A facility alone can provide these needs

- Although many are not used to devoting their resources
toward software developments.

.- Working together can be more productive than the
sum of the parts.
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