MANTID

The Mantid Project:

Notes from an International Software
Collaboration

Nick Draper
Tessella

www.mantidproject.org

ISIS & D Tessell ATY

SPALLATION NEUTROD RCE

¥ Overview

Mantid Introduction
- A Selection of Risks
Management strategies
- Conclusion

MANTID

¥ Project Goals

Goals

- Consolidate the data reduction/analysis
software for neutron scattering without
restricting the needs of the instrument
scientists

Key requirement
- Create a Data Analysis framework
- not instrument or technique/dependent
- Cross-platform
- Windows, Linux, Mac
- Easily extensible
- Open source

MANTID

¥ A Selection of Risks

Lasting engagement with a large
number of stakeholders

Design needs to support flexibility for ‘u
future needs

- Technical single point of failure

Development continuity across the
team __
Larger development teams are less (IS Tel 2N
efficient |
. Testing and deployment takes time &

Active development can affect
robustness

la==v

MANTID

Lasting engagement with a large number of

stakeholders
ISIS SNS/HIFR
PrOJ e Ct U Users
Organisation
Scientific Scientific
Cgtrﬁm?tgee C(S)trﬁ?r::?t%e
ACt | Ve p FOJ e Ct Development Development

Team Team

SPONSOrS

Project Management
Board

Frequent releases

Responsive to
change

MANTID

~ [Design needs to support flexibility for future
needs

. Separation of Data and Algorithms

Encapsulated “User Code” in specific places
- Algorithms
- Workspaces

- Use of well designed interfaces to allow generic use
of components

Reuse of existing components

. Careful memory management when handling large
datasets

MANTID

Architectural Design - Overview

Python
Command line & |nstrument log
ipti files
ripting
MantidPlot
Graphing and
DAE direct
access
Future Instrument [
specific Ul

MANTID

RAW data files

N

NEXUS data
files

N

Architectural Design - Overview

Python

Command line &

Scripting

MantidPlot
Graphing and

Future Instrument []

specific Ul

MANTID

Instrument log
files

DAE direct
access

N~ A

RAW data files

N~

NEXUS data
files

N~

Architectural Design - Overview

Python
Command line & Instrument log
ipti files
Scripting

RAW data files

MantidPlot
Graphing and
NEXUS data
files

DAE direct N

access

Future Instrument []
specific Ul

N~

MANTID

Plug in extensions

Algorithm Dialogs
Custom Interfaces
Custom Menus

Python scripts & libraries
Framework

Workflow Algorithms Workspaces
Algorithms

Fit Functions _ _
Cost Models Archive Searching

LiveData Listeners
Data Catalogs

Unit Conversions

Utility

Constraints
Minimizer

MANTID

¥ Preventing single points of failure

No “Code Ownership”

- Functionality protected via unit tests
Mobile development talent

- Sub project teams to focus on significant
developments

Knowledge transfer

- Daily & focused skype meetings

- Code reviews

- Architectural and detailed design documentation
- Developer documentation

- Annual developer meetings

MANTID

¥ Development continuity across the team

Coding standards ‘ Team Work
- Sensible
- Agreed

Support within the team __
- Mentoring
- Training i
Design and code reviews 2
Developer meetings b

MANTID

Larger development teams are less efficient

- Automate repetitive tasks
- Saves time
- Ensures they happen
- Optimize meeting time
- Control attendees at meetings

- Use the right technology
- Daily skype chat meetings

- Ensure the right people talk together

Use tools to prevent duplicated work and missed
tasks

- Development

- Testing

MANTID

¥ Continuous Integration Environment

,{;ﬁ:" a Deploy to
- i ot w\l - Download site
RO

Mantid Project Wiki

Y

() Wy

GitHub
epository

= |P | Automated

__ Build + unit test

7Y -Linux (RHE & Ubuntu)
-Mac OSX

PR T -Windows 32

N -Windows 64

. trac
y Issue

(e tracking

system
Systemy

Developers

MANTID

Testing and deployment takes time &
Active development can affect robustness

- Automated Unit Testing
- Test individual components
- Over 6,000 tests
- Fast - just a few minutes
- Run on all platforms on commit
- Rapid feedback to developers

.- Automated System Tests
- Test complete workflows
- Compare numerical results with stored examples
- Over 150 tests
- Slow - minutes to hours
- Run on all platforms daily
- Feedback to all developers

MANTID

Manual Testing

- Each change reviewed and tested

- Whole development team, every week
- Each developer tests other peoples work
- Communication and knowledge sharing

- Usability and general usage tests
- Each environment tested
- Low coverage

- Only once well tested & interactive development

- Instrument scientists

- Very high quality feedback & future requirements
- Generate confidence

- Must be well managed

MANTID

Releases

Pea

J

=" yared

Mmmmm_mm 11N+

= juswdo|ana(g

MANTi

Conclusion

- Software is mission critical to modern neutron
facilities
- High performance
- Reliable
- Leading edge
- Responsive to change
- Maintainable
- Well documented

- To get these a project needs
- Vision
- Resource
- Stability
- Scientific and Technical Leadership
- Talented developers

MANTID

¥ Conclusion

- A facility alone can provide these needs

- Although many are not used to devoting their resources
toward software developments.

.- Working together can be more productive than the
sum of the parts.

Sum of count

800 . o
M trivial

700 ® minor
major

M critical

g

ISIS & SNS m blocker
Team Performing

g

ISIS & SNS
Team Forming

Tickets Completed
g

™ © A e S S SR . B N S A S 3
o Lo Lo S S o S o S & Lo o & o Lo (N o e 2 2 2 2 < 2
SR O\ O SR\ S SR\ S R N N SR\ S S SN S S N M o
i Cl > (> C > > Cl > v C < <l < < <l Gl & & & (2 < & (4
< o e e e 2 e e e e & et Q" e e & e & & & & > & &
FE O E T T Y Y Y Y Y g T
ilestone

	The Mantid Project: �Notes from an International Software Collaboration�
	Overview
	Slide Number 3
	A Selection of Risks
	Lasting engagement with a large number of stakeholders
	Design needs to support flexibility for future needs
	Architectural Design - Overview
	Architectural Design - Overview
	Architectural Design - Overview
	Plug in extensions
	Preventing single points of failure
	Development continuity across the team
	Larger development teams are less efficient
	Slide Number 14
	Testing and deployment takes time & �Active development can affect robustness�
	Manual Testing
	Releases
	Conclusion
	Conclusion

