

The Role of Data Driven Models in Optimizing the Operation of the National Ignition Facility

Presentation to

14th International Conference on Accelerator & Large Experimental Physics Control Systems (ICALEPCS) October 6-11, 2013

Kathleen McCandless

Lawrence Livermore National Laboratory • National Ignition Facility & Photon Science This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

LLNL-PRES-644523

NIF Laser performance modeling is a team effort, led by Brian MacGowan

	Jean-Michel Di Nicola	Sham Dixit	Eyal Feigenbaum	Ron House
Brian MacGowan				
Program Leader	Ken Jancaitis	Kai La Fortune	Kathleen McCandless	Charles Orth
	Rick Sacks	Mike Shaw	Clay Widmayer	Steven Yang

The National Ignition Facility August 13th, 2013, 1.7MJ shot, we achieved the highest DT neutron yield, estimated at nearly 3 × 10¹⁵ (three quadrillion!)

EL EL

YALL I YY Y Y Y

To deliver an accurate energy and pulse shape, we require a physics based simulation engine

LPOM provides the Virtual Beam Line (VBL) code with quantitative measurements from laser components

The **Virtual Beam Line** code simulates laser physics including: Frantz-Nodvik gain amplification, diffraction, nonlinear effects such as self focusing, and frequency conversion

Delivering the pulse shape requires a detailed laser energetics model which is provided by LPOM

We need to be operate at very high energy and power, but with low risk of optical damage

The Laser Performance Operations Model is used for planning, executing and interpreting each experiment

Results of shot performance are fed back into the LPOM/VBL model to improve subsequent shots

Shot performance is tracked with a dashboard web interface and the ability to drill into beamlines and quads.

Kathleen McCandless - ICALEPCS, 10/6/13

Our live physics model of the laser (LPOM/VBL) is key to our ability to deliver continued success!

NIE