
Virtualization and deployment
management for the KAT-7 / MeerKAT

control and monitoring system
Neilen Marais

Senior Software Engineer nmarais@ska.ac.za

Introduction
 Radio Telescopes in the Karoo

 KAT-7
 MeerKAT

 Deployment of CAM subsystem
 virtualization
 automated deployment
 share some experiences

Work to improve started end 2011
 Deployment fraught
 Hardware failure -> extended downtimes
 Limited development environments

oquite different from deployments

Requirements
 Deterministic+repeatable system configuration
 Versioned configuration history

 quick revision roll-back/forward

 Minimize manual steps in deployment
 Minimize downtime

 CAM software deployment
 CAM system hardware failure

 Isolate resource usage on a shared server
 Easily deploy development environments

 similar to site deployment environments
 limited development hardware resource

Shape of KAT-7 CAM
 Instrument is distributed

 Karoo Array Telescope Control Protocol (KATCP)
 Ethernet as fieldbus

 Telescope is Remote
 Avoid human generated RFI
 Control via high speed SANReN fibre (ring) network

 Operational Centre in Cape Town
 Control room 700 km from site
 Backup and long-term archiving
 Development

 Mostly coded in the Python language

KAT-7 Array

Future MeerKAT Array

KAT-7 Receptor Receiver

7

 Receiver Horn Antenna
 RF Low Noise Amplifier (LNA)
 Stirling Cryo cooler with Ion Pump
 RF Noise diode coupler
 RF Amplifier

KAT-7 Receptor Pedestal

8

 Antenna positioner control unit
 RF amplifier/attenuator
 RF to optical transducer
 Pedestal chiller
 Building Management
 Weather station

KAT-7 Compute Container

9

Inside KAT-7 Compute Container

10

 Antenna positioner control unit
 RF amplifier/attenuator
 RF to optical transducer
 Pedestal chiller

 Optical to RF transducers
 RF Down-conversion and

conditioning
 FPGA based Digital Back End
 Data capture server
 Time/Frequency reference
 CAM Servers
 BMS
 Chiller

●Control Room
Observation Framework

11

Pieces of the Puzzle

 Server Virtualization

 Automated Deployment

 Deployment Configuration Database

 Combined: Hassle-free, deterministic, reliable
deployment

Virtualization

 Many Technologies, Many Makers
 Full virtualization more flexible
 Containerization more efficient

 Blurring of lines
 Other considerations

 Familiarity
 Licensing
 Supported Host environments

Server Virtualization: Proxmox VE
 Specialized Hypervisor distribution based on

Debian GNU/Linux
 FOSS licensing: no cost, no hassle

 Supports both:
 Containers: OpenVZ
 Full virtualization: KVM

 Simple and quick host install
 Easy to use web-based management tools
 Pre-configured base OS containers

Performance
 CAM uses soft-realtime design

 Only needs enough aggregate CPU throughput

 Similar aggregate CPU utilization on host
before and after virtualization

 IO-bound tests using 10 GbE interface
 Using different virtualization options

Test MachineTest Machine
SUN FIRE X4150
2x Intel(R) Quad-core Xeon(R) E5450 CPUs
16 GB RAM
Gen 1 Myricom Myri10GE 10GbE

Performance results

Config Rate
(Gb/s)

CPU use
(%)

Relative
rate (%)

CPU /
Gb/s (%)

Baseline 5.49 65.8 100.0 12.0

Host 4.80 59.2 87.5 12.3

OVZ exclusive 4.65 61.2 84.7 13.2

OVZ veth 3.72 21.1 67.8 5.8

OVZ venet 3.86 20.3 70.4 5.3

KVM virtio 2.39 60.5 43.6 25.3

Baseline: Ubuntu 10.04
CAM uses veth

 Most flexible

Only 2x1Gb interfaces in production

Desktop virtualization: Virtualbox
 Simulated system on developer, commissioner

workstations
 Toy-KAT VM

 Variety of workstation OSes
 Can't take over whole machine for hypervisor

 Virtualbox virtualization host runs on them all
 Also FOSS licensing
 Not production use

 positive experience

Software Configuration Management

 Automated Deployment Scripts

 Deployment Configuration Database

 Configuration Manager

SW Configuration Management Tech

 Preferred a Python based solution

 Considered existing 'full stack' systems (e.g.
Puppet, Chef, Saltstack)
 Central management server
 Upfront time investment

Our Sw Conf Management System
 Experimented with Fabric

 Python based SSH automation library

 Script logic is defined in Python
 Only requires SSH server on nodes to be managed

 Started capturing node configuration details
 simple text file in INI-format

 Started implementing a Configuration Manager
 Parsed the configuration database file

 Fabric library functions to deploy tasks to nodes
 Soon got team buy-in

Configuration Database

 Node network configuration
 Node hosting type
 Assigned node resources

 number of CPUs
 RAM
 Unique container / VM ID number
 Diskpace, etc.

 Other meta information

Disposability and Persistentance
 Node containers are treated as disposable

 Production containers rebuilt at each major release

 Development environments are routinely rebuilt

 Persistent data has to be managed separately
 NAS server, exported via NFS

 Node NFS mounts configed as part of deployment
 Potential issues with changing dB schemas
 Central point for backups

Deployment steps

 Configuring Proxmox hypervisor hosts

 Provisioning

 Configuration

Unconfigured Hosts

Configuring Proxmox host
 Rarely done
 Install base Proxmox from CD
 Takes about 15 minutes including fab below

fab -H root@kat-cam-r410-1,root@kat-cam-r410-2\
 proxmox.configure_host

Proxmox installed and configured

Provision Node Containers

fab proxmox.create_containers_by_group:\
karoo_system_nodes,700

Virtual Node Containers Provisioned

Configure Nodes

fab kat_deploy.install_nodes_by_group:\
karoo_system_nodes,karoocamv7-requirements.txt

 Install system packages (apt-get install ...)
 Install python packages (pip install ...)
 Configure NFS mounts
 Check out, build, install and configure packages

from internal SVN
 Configure web servers, cron jobs, other OS level

 services as required
 Set up databases (schemas if needed)

Nodes Configured

Some Experiences
 Importance of transitioning from a mostly manual to automated

deployment step by step.
 Remaining deployment problems are entered into our issue tracker

 Deployment issues are prioritised for fixing

 Important to make deployment processes idempotent
 Important to make each step reliable

 Local copies of internet based resources (PyPI and Ubuntu repositories)
 Unexpected race conditions when things are not done at 'human' speed

 Usefulness of virtualization to allow testing and experiment with the
deployment process -- you can just throw away and re-build a virtual
node to test from-scrach deployment.
 Also means we can test deployment, and not just our software

Conclusion

 Easy deployment of realistic development/testing environments
 including virtual networking mirroring actual configurations)

 Ability to quickly switch between software versions by switching containers

 Have largely met our goals

Future work:
 Deployment to fresh containers in the Continuous Integration process

 Running full integration test suite on these containers

 Automatic daily building of Toy-KAT VMs
 Converting all legacy configuration scripts to the Fabric framework
 Future MeerKAT deployment should be more of the same

 more complex network configuration

Most frequently experienced advantages are:

33

Thank you!

http://www.ska.ac.za

nmarais@ska.ac.za

mailto:nmarais@ska.ac.za

	MeerKAT Control and Monitoring (CAM)
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Thank you!

