
Virtualization and deployment 
management for the KAT-7 / MeerKAT 

control and monitoring system
Neilen Marais          

Senior Software Engineer                                     nmarais@ska.ac.za 
            



Introduction
 Radio Telescopes in the Karoo

 KAT-7
 MeerKAT

 Deployment of CAM subsystem
 virtualization
 automated deployment
 share some experiences

Work to improve started end 2011
 Deployment fraught
 Hardware failure -> extended downtimes
 Limited development environments

oquite different from deployments



Requirements
 Deterministic+repeatable system configuration
 Versioned configuration history

 quick revision roll-back/forward

 Minimize manual steps in deployment
 Minimize downtime

 CAM software deployment
 CAM system hardware failure

 Isolate resource usage on a shared server
 Easily deploy development environments

 similar to site deployment environments
 limited development hardware resource



Shape of KAT-7 CAM
 Instrument is distributed

 Karoo Array Telescope Control Protocol (KATCP)
 Ethernet as fieldbus

 Telescope is Remote 
 Avoid human generated RFI
 Control via high speed SANReN fibre (ring) network

 Operational Centre in Cape Town
 Control room 700 km from site 
 Backup and long-term archiving
 Development

 Mostly coded in the Python language



KAT-7 Array



Future MeerKAT Array



KAT-7 Receptor Receiver

7

 Receiver Horn Antenna
 RF Low Noise Amplifier (LNA)
 Stirling Cryo cooler with Ion Pump
 RF Noise diode coupler
 RF Amplifier



KAT-7 Receptor Pedestal

8

 Antenna positioner control unit
 RF amplifier/attenuator
 RF to optical transducer
 Pedestal chiller
 Building Management
 Weather station



KAT-7 Compute Container

9



Inside KAT-7 Compute Container

10

 Antenna positioner control unit
 RF amplifier/attenuator
 RF to optical transducer
 Pedestal chiller

 Optical to RF transducers
 RF Down-conversion and 

conditioning
 FPGA based Digital Back End
 Data capture server
 Time/Frequency reference
 CAM Servers
 BMS
 Chiller



●Control Room
Observation Framework

11



Pieces of the Puzzle

 Server Virtualization

 Automated Deployment

 Deployment Configuration Database

 Combined: Hassle-free, deterministic, reliable 
deployment



Virtualization

 Many Technologies, Many Makers
 Full virtualization more flexible
 Containerization more efficient

 Blurring of lines
 Other considerations

 Familiarity
 Licensing
 Supported Host environments



Server Virtualization: Proxmox VE
 Specialized Hypervisor distribution based on 

Debian GNU/Linux
 FOSS licensing: no cost, no hassle 

 Supports both:
 Containers: OpenVZ
 Full virtualization: KVM 

 Simple and quick host install
 Easy to use web-based management tools
 Pre-configured base OS containers



Performance
 CAM uses soft-realtime design

 Only needs enough aggregate CPU throughput

 Similar aggregate CPU utilization on host 
before and after virtualization

 IO-bound tests using 10 GbE interface
 Using different virtualization options

Test MachineTest Machine
SUN FIRE X4150
2x Intel(R) Quad-core Xeon(R) E5450 CPUs
16 GB RAM
Gen 1 Myricom Myri10GE 10GbE



Performance results

Config Rate 
(Gb/s)

CPU use 
(%)

Relative 
rate (%)

CPU / 
Gb/s (%)

Baseline 5.49 65.8 100.0 12.0

Host 4.80 59.2 87.5 12.3

OVZ exclusive 4.65 61.2 84.7 13.2

OVZ veth 3.72 21.1 67.8 5.8

OVZ venet 3.86 20.3 70.4 5.3

KVM virtio 2.39 60.5 43.6 25.3

Baseline: Ubuntu 10.04
CAM uses veth

 Most flexible

Only 2x1Gb interfaces in production



Desktop virtualization: Virtualbox
 Simulated system on developer, commissioner 

workstations
 Toy-KAT VM

 Variety of workstation OSes
 Can't take over whole machine for hypervisor

 Virtualbox virtualization host runs on them all 
 Also FOSS licensing
 Not production use

 positive experience



Software Configuration Management

 Automated Deployment Scripts

 Deployment Configuration Database

 Configuration Manager



SW Configuration Management Tech

 Preferred a Python based solution

 Considered existing 'full stack' systems  (e.g. 
Puppet, Chef, Saltstack)
 Central management server
 Upfront time investment



Our Sw Conf Management System
 Experimented with Fabric

 Python based SSH automation library

 Script logic is defined in Python
 Only requires SSH server on nodes to be managed

 Started capturing node configuration details 
 simple text file in INI-format

 Started implementing a Configuration Manager
 Parsed the configuration database file

 Fabric library functions to deploy tasks to nodes
 Soon got team buy-in



Configuration Database

 Node network configuration
 Node hosting type
 Assigned node resources 

 number of CPUs
 RAM
 Unique container / VM ID number
 Diskpace, etc.

 Other meta information



Disposability and Persistentance
 Node containers are treated as disposable

 Production containers rebuilt at each major release 

 Development environments are routinely rebuilt

 Persistent data has to be managed separately
 NAS server, exported via NFS

 Node NFS mounts configed as part of deployment
 Potential issues with changing dB schemas
 Central point for backups



Deployment steps

 Configuring Proxmox hypervisor hosts

 Provisioning

 Configuration



Unconfigured Hosts



Configuring Proxmox host
 Rarely done
 Install base Proxmox from CD
 Takes about 15 minutes including fab below

fab -H root@kat-cam-r410-1,root@kat-cam-r410-2\
    proxmox.configure_host



Proxmox installed and configured



Provision Node Containers

fab proxmox.create_containers_by_group:\
karoo_system_nodes,700



Virtual Node Containers Provisioned



Configure Nodes 

fab kat_deploy.install_nodes_by_group:\
karoo_system_nodes,karoocamv7-requirements.txt

 Install system packages (apt-get install ...)
 Install python packages (pip install ...)
 Configure NFS mounts
 Check out, build, install and configure packages 

from internal SVN
 Configure web servers, cron jobs, other OS level 

 services as required
 Set up databases (schemas if needed)



Nodes Configured



Some Experiences
 Importance of transitioning from a mostly manual to automated 

deployment step by step. 
 Remaining deployment problems are entered into our issue tracker

  Deployment issues are prioritised for fixing

 Important to make deployment processes idempotent
 Important to make each step reliable

 Local copies of internet based resources (PyPI and Ubuntu repositories)
 Unexpected race conditions when things are not done at 'human' speed

 Usefulness of virtualization to allow testing and experiment with the 
deployment process -- you can just throw away and re-build a virtual 
node to test from-scrach deployment.
 Also means we can test deployment, and not just our software



Conclusion

 Easy deployment of realistic development/testing environments 
 including virtual networking mirroring actual configurations)

 Ability to quickly switch between software versions by switching containers

 
 Have largely met our goals

Future work:
  Deployment to fresh containers in the Continuous Integration process

  Running full integration test suite on these containers

 Automatic daily building of Toy-KAT VMs
 Converting all legacy configuration scripts to the Fabric framework
 Future MeerKAT deployment should be more of the same

 more complex network configuration

Most frequently experienced advantages are:



33

Thank you!

http://www.ska.ac.za

nmarais@ska.ac.za

mailto:nmarais@ska.ac.za

	MeerKAT Control and Monitoring (CAM)
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Thank you!

