Real Time Control for KAGRA 3km Cryogenic Gravitational Wave Detector in Japan

October 7, 2013 ICALEPCS at San Francisco, U.S.A

Osamu Miyakawa(ICRR, UTokyo) and KAGRA collaboration

JGW-G1301851

ICALEPCS 2013 at San Francisco, Osamu Miyakaw

Einstein's Theory: *information carried by gravitational radiation at the speed of light* Gravitational waves!

Coalescing compact binaries (neutron stars, black holes)

Non-axi-symmetric supernova collapse

Non-axi-symmetric pulsar (rotating, beaming neutron star)

Detection of gravitational wave using laser interferometer

ICALEPCS 2013 at San Francisco, Osamu Miyakawa

Location of KAGRA

- Underground Kamioka mine, Gifu prefecture.
- ~250km away from Tokyo.
- ~40km away from Japan sea.
- This area is being used as cosmic ray observatories.

N

KAGRA KAGRA tunnel entrance (New Atotsu)

KAGRA KAGRA tunnel entrance (New Atotsu)

Low temperature operation at KAGRA to reduce thermal distortion

JGW-G1301851

JGW-G1301851

ICALEPCS 2013 at San Francisco, Osamu Miyakawa

ICALEPCS 2013 at San Francisco, Osamu Miyakawa

KAGRA Control network design

KAGRA Control network design

Rack layout for initial setup

Rack layout for initial setup

Rack layout for initial setup

KAGRA Real time model on Matlab, Simulink

ICALEPCS 2013 at San Francisco, Osamu Miyakawa

Generated C source of Real Time code from GUI

Actual control signals (filter bank, matrix, trigger, linearization etc.) will be generated automatically when building real time modules.

```
// FILTER MÓDULE
lsc pox = filterModuleD(dsp ptr,dspCoeff,LSC POX,dWord[0][0],0);
// FILTER MODULE
lsc_poxfb = filterModuleD(dsp_ptr,dspCoeff,LSC_POXFB,dWord[0][1],0);
for(ii=0;ii<1;ii++)
  lsc_nxmtrx[1][ii] =
  pLocalEpics->ctr_LSC_NXMTRX[ii][0] * lsc_trx + pLocalEpics->ctr.LSC_NXMTRX[ii][1] * lsc_poxdc;
// Relational Operator
lsc_operator = ((pLocalEpics > ctr.LSC_XTHRESH) <= (lsc_trx));
// DIVIDE
if (lsc nxmtrx[1][0] != 0.0)
  lsc divide = lsc pox / lsc nxmtrx[1][0];
else{
  lsc divide = 0.0;
```


Actual control signals (filter bank, matrix, trigger, linearization etc.) will be generated automatically when building real time modules.

KAGRA MEMD screen -- GUI for EPICS --

JGW-G1301851

ICALEPCS 2013 at San Francisco, Osamu Miyakawa

KAGRA MEMD screen -- GUI for EPICS --

JGW-G1301851

ICALEPCS 2013 at San Francisco, Osamu Miyakawa

Local control for Pre-Isolator

Time series

500 X1:X15-ADC FILTER 00 IN1 00 300 200 Signal 100 n 100 200 20 30 40 50 60 **Control ON** Time (s) T0=01/02/2012 09:44:22 Avg=1

- ~30 RT front-end PC
- ~30 Fiber connected PCIE extension chassis
- ~60 ADC (x32ch) : total ~2000ch
- ~40 DAC(x16ch): total ~500ch
- ~80 DO (x32ch): total ~2000ch

Network design for controls and DAQ

Calendar year	2010	2011	2012	2013	2014	2015	2016	2017	2018
Project start		•							
Tunnel excavation					 (~1 y	ear del	ay)		
initial-KAGRA									
				i	KAGRA	obs. 🗧			
baseline-KAGRA		Ad	v. Optic	s syst	em and	tests			
					Cry	ogenio/	systen	n 🔲	
Observation									

initial KAGRA

- Room-temp. FPMI
- Low laser power (10W)
- Simple seismic isolation
- 10kg silica TM

baseline KAGRA

- Cryogenic RSE
- High laser power (180W)
- Low frequency seismic isolation
- 23kg sapphire TM

- The project started in 2010
- Due to the March 11 earthquake (2011), budget implementation was delayed and whole the schedule shifted 1 year behind.
- KAGRA will be in 2 stages: iKAGRA and bKAGRA