
Yannick Le Goc, Institut Laue-Langevin

ICALEPCS 2013 11 october 2013

•Data Acquisition Chain
•JOGL Choice
•Draw Detector Data
•3 Techniques in JOGL

•NOMAD
•C++ Server
•Java SWT Client

•Different detector geometries and sizes

•Can be small, 1 pixel
•Can be big, 4K x 4K pixels

•Different acquisition frequencies
•From 0.01Hz to 5MHz

(IN5 detector image)

•Plot requested refresh frequency : 10Hz

•How to visualize such a large quantity of
data at high frequency?

•Plot requested refresh frequency : 10Hz

•How to visualize such a large quantity of
data at high frequency?

Need for a performant live rendering

•Python Library
•GuiQWT
•PyQtGraph

 Too difficult to integrate

•Java Library
•TANGO
•Jzy3d

 Easy to integrate but not
performant enough

•JOGL
•OpenGL binding in Java
•Close to the graphics card
•Optimized rendering guarantee
•Current version 2.0.2 supports OpenGL 4.3

•API for interacting with the GPU
•State machine
•Very simplified pipeline

•API for interacting with the GPU
•State machine
•Very simplified pipeline

•How to convert pixels into vertices?

•2D detector data visualized as an array of pixels

•Vertices are shared!

•Detector data transformed into vertices

•Rasterization

•Smooth rendering

•Not the visualization we want !

•Smooth rendering

Rothko II

•Quadruple the vertices

•Non-smooth rendering

•Technique 1: Immediate Mode

void display(GL gl) {

 gl.glBegin(GL.GL_QUADS);
 …
 gl.glColor3f(r1, g1, b1);
 gl.glVertex2f(v1.x, v1.y);
 gl.glVertex2f(v2.x, v2.y);
 gl.glVertex2f(v6.x, v6.y);
 gl.glVertex2f(v5.x, v5.y);
}

•Simple, but too many calls to OpenGL
•More than 16K calls for 4K x 4K detectors !

•Technique 2: Vertex Arrays

void display(GL gl) {

 fillBuffers();
 drawBuffers(gl);
}

•Technique 2: Vertex Arrays

void fillBuffers() {

 …
 vertexBuffer.put(v1.x);
 vertexBuffer.put(v1.y);
 vertexBuffer.put(v2.x);
 vertexBuffer.put(v2.y);
 …
 colorBuffer.put(r1);
 colorBuffer.put(g1);
 colorBuffer.put(b1);
 …
}

•Technique 2: Vertex Arrays

void drawBuffers(GL gl) {

 gl.glVertexPointer(2, GL.GL_FLOAT, 0,
 vertexBuffer);
 gl.glColorPointer(3, GL.GL_UNSIGNED_BYTE, 0,
 colorBuffer);
 gl.glDrawElements(GL.GL_QUADS, size,
 GL.GL_UNSIGNED_INT, indexBuffer);

}

•Much better, only 3 OpenGL calls

•Technique 3: Vertex Buffer Objects (VBO)

•Keep the vertex buffer in the memory of the
GPU
•Only transfer the color buffer

•Drawing times

•VBO 10 times faster than Immediate Mode

•Advanced technique with VBO
•Very efficient rendering with JOGL
•Satisfies instrument requirements

Presenter
Presentation Notes
10Hz not achieved for the instrument requirements

•Advanced technique with VBO
•Very efficient rendering with JOGL
•Satisfies instrument requirements

Presenter
Presentation Notes
10Hz not achieved for the instrument requirements

•Any questions?

Contact: legoc@ill.fr

	JOGL Live Rendering Techniques in Data Acquisition Systems
	Outline
	Data Acquisition Chain
	Data Acquisition Chain
	Data Acquisition Chain
	Data Acquisition Chain
	Existing Libraries
	Solution
	What is OpenGL?
	What is OpenGL?
	Draw Detector Data
	Draw Detector Data
	Draw Detector Data
	Draw Detector Data
	Draw Detector Data
	Draw Detector Data
	Draw Detector Data
	Code with JOGL
	Code with JOGL
	Code with JOGL
	Code with JOGL
	Code with JOGL
	JOGL Techniques Comparison
	Conclusion
	Conclusion
	Thank You

