PVMANAGER: A JAVA LIBRARY FOR REAL-TIME
DATA PROCESSING

G. Carcassi, K. Shroff NSLSII, Upton, NY 11973, USA

ABSTRACT

ncreasingly becoming the standard connection layer in Control System Studio,
ovmanager is a Java library that allows creating well behaved applications that
process real time data, such as the one coming from a control system. It takes care of
the caching, queuing, rate decoupling and throttling, connection sharing, data
aggregation and all the other details needed to make an application robust. Its fluent
APl allows to specify the detail for each pipeline declaratively in a compact way.

INTRODUCTION

A common problem encountered by client applications for control systems is the
decoupling of the events from the controls network and the Ul thread. The need to
aggregate the events in time (for rapidly changing pv/pvs) and for groups of pvs was
necessary to address various performance issues in CS-Studio and to support multi-
channel applications.

The goal of pvManager is to make writing clients for real-time data more straight-
forward, by providing all the pieces that such a client require, such as data rate
decoupling, via either queuing or caching, data aggregation/manipulation and

notification dispatch on the appropriate final thread.

ARCHITECTURE

|
Cnllét::tnr

N

Notifier Monitor

(>
/ N/

X

PV Function

T

X —» Aa

\

EPICS

ﬂ._i

Source rate

PV Function Cache

Desired rate

Figure 1: Architecture diagram. Shows the part of the client that runs at the rate dictated by the
source of the data on the right and the part of the client that runs at the rate at a client dependent
rate.

The initial intent of pvmanager was just to address the recurring issues of writing a
well behaved client of a soft real-time system. The aim has now grown to provide a
full end-to-end framework for gathering data from different sources, both
publish/subscribe and command/response, aggregating it and performing computation
on background threads.

The framework now consist of multiple modules:

evtype: provides the definition in terms of Java interfaces of a standardized set of
data. One is not limited to the use of these types (the basic type in pvmanager is
Object) but standardization on them allows to unlock all the functionality already
implemented

edatasources: provides support for accessing data from publish/subscribe systems
eservices: provides support for accessing data from publish/subscribe systems

oformula: provides a pluggable Domain Specific Language for aggregation and
computation

The core of pvmanager allows combining all these elements and creating readers or
writers that are thread-safe with a managed rate of notification.

CS-Studio can now leverage all these elements, but, since they are well separated,
they can be tested without the Ul environment (unit tests are much easier to write)
and can be used in other environments (such as plain Swing applications, command
line, web servers, and so on).

PVReader<T> pv = PVManager.read(expression)

.readListener (new PVReaderListener<T>() {

public void pvChanged (PVReaderEvent<T7T> event) ({

})

.notifyOn (executor)
.timeout (timeDuration)

.maxRate (timeDuration) ;

U.S. DEPARTMENT Ol

@) ENERGY

Publish/subscribe

CSS core

: v4
. I

| CSS

|

|

|

|
|
|
|
: pvA client
L

BOY

DataBrowser

I

I

|

| .

| Gen eral purpose clients
I

|

I

I

I

- Data Sources

|

|

‘ |
Aggregation B

!

Data Definition
Processing NEW! Specialized clients
Log Viewer
graphene Visualization

Channel Viewer

. . I
pvm services Registry "=V
masar ! Bindings

WebUI, scripts, other client

Logbook
KT

Figure 2: Overall Architecture of accelerator tools and services.

DATASOURCES

Datasources are the abstract definition for publish/subscribe data, which is the
typical mode for real-time systems, such as EPICS. Datasources work on channel, and
are able to subscribe readers or writers to each channel. Current implementations
include support for simulated signals, an in memory scratch space, filesystem,
Channel Access (v3) and PVAccess (v4).

The system can be easily extended with other types. All one needs to do is implement
a few abstract methods, and connect the callback of the desired system to the
methods that trigger processing of connection and message notifications. Datasource
automatically provide support for multiplexing (multiple readers on the same
channel). The rate decoupling (limit the rate from the datasource to the UI
subsystem) and rate throttling (decrease the rate if the Ul can’t keep up) that are
needed for a well behaved client, are also automatically supported.

SERVICES

Command/response is another typical source of data. Examples of command/response
include web services (REST or SOAP), CORBA services and databases. The abstraction
for a service within the framework is an asynchronous call that takes a key/value map
of argument, and returns a key/value map of results. This allows to generically handle
very different types of data and services. The value, if possible, should map to VIypes
so that one can reuse many of the functionality and clients built on top of those.

The framework also includes a ServiceRegistry, which works as a locator for the
services. A typical use case in CS-Studio is that some plug-ins would register their
service implementation to the registry, while Ul elements would use the registry to
fetch the service implementation given a name provided by the user.

FORMULA

Pvmanager provides a Domain Specific Language for data computation. This is
automatically done on background threads, making it easy to leave the Ul thread
free. FormulaFunctions can be dynamically added in a formula registry, in much the
same way that services are added. They are automatically picked up by the parser.

The language supports overriding, and the match to the correct signature is done at
runtime. This also supports the case in which types within the expression are changing
dynamically. Support for standard mathematical operation has already been added, as
well as aggregation such as scalars into array and arrays into tables, and other utility
functions (pick the highest alarm, “pointer-like” function that given a string returns
the value of the channel with that name).

CONCLUSION

Pvmanager has grown into a full framework to gather data in real time, aggregate it
and perform computation. All this while taking care of the issues that such a
complicated multi-threaded system would entail.

REFERENCES

] http://pvmanager.sourceforge.net/

G. Carcassi, Pvmanager & Graphene, EPICS spring meeting (2013)
] Control System Studio; http://controlsystemstudio.github.com

] http://graphene.sourceforge.net/

NS e



http://www.facebook.com/pages/PosterPresentationscom/217914411419?v=app_4949752878&ref=ts

