

FPGA Implementation Of A Digital Constant Fraction For Fast Timing Studies In The Pico Second Range

P. Mutti, E. Ruiz-Martinez, T. Mary, J. Ratel, F. Rey, R. Saint-Fort

Abstract: Thermal or cold neutron capture on different fission systems is an excellent method to produce a variety of very neutron-rich nuclei. Since neutrons at these energies

bring in the reaction just enough energy to produce fission, the fragments remain neutron-rich due to the negligible neutron evaporation thus allowing detailed nuclear structure studies. In 2012 and 2013 a combination of clover and standard coaxial Ge detectors plus very fast LaBr₃(Ce) scintillators has been installed at the PF1B cold neutron beam of the Institut Laue-Langevin (ILL). The present paper describes the digital acquisition system used to collect information on all gamma rays emitted by the decaying nuclei. Data have been acquired in a trigger-less mode to preserve a maximum of information for further off-line treatment with a total throughput of about 10 MByte/sec. Special emphasis is devoted to the FPGA implementation of an on-line digital constant fraction algorithm allowing fast timing studies in the pico second range.

PF1B Cold Neutron Beam Reactor hall Inclined guide H Neutron guide hall - ILL 7 Vercors side (WEST) Reactor hall ILL Experimental level (C)

Maximum flux at the wavelength of 4 Å of about 2 x 10¹⁰ neutrons/cm²/s on a total beam size of 20 cm x 12 cm.

Experimental Setup

Collimation system

To reduce the beam size to match a diameter of about 1 cm at the sample position, we have introduced a series of boron and lithium collimators upstream.

> 24 different samples have been irradiated in a neutron beam of 10⁸ n/cm²/s

Detector array

Target chamber

Sample holder capable of keeping the sample in a stable and reproducible position. The target material was suspended to the sample holder using a Teflon bag consisting of a foil of 25 mg/ cm^{2.}

allowing beam reconfiguration are described in the text.

operimental zone PF1

Evacuated inner chamber for the ²⁴¹Pu measurements.

EXILL campaign 2 cycles \rightarrow 100 days

1st cycle: spectroscopy on both stable and ²³⁵U targets

2nd cycle: fast timing with ²³⁵U and spectroscopy with ²⁴¹Pu

Fast timing measurements:

+ BGO suppression shield

68 (spectroscopy) to 72 (fast timing) separate channels

Digital Acquisition

Constant Fraction Discriminator

Features:

- × 6U VME64x board with 2eSST support.
- × Based on latest XILINX Virtex-6T 40mn FPGA.
- × Modular IO Expansion with full front panel access (MPF – Multi-Purpose Front IO).
- × 5V tolerant VME64x P2 user IO with Spartan-6 IO Support.

The resolution obtained with Ge (left) and LaBr₃(Ce) (right) detectors.

- × On-board DDR3 Memory.
- × Native PCI Express GEN2 support over VME64x P0 and/or front-end MPF.
- × TOSCA II FPGA architecture:
- Optimized for XILINX Virtex-6 FPGAs.
- PCI Express GEN2 EP/RC.
- Network on Chip (NoC) architecture.
- Shared Memory.

FPGA implementation of a CFD algorithm in combination with fast digitizers (1GS/s 10 bits) has shown its potential to replace complex analogue chain for fast timing measurements.

Time dispersion obtained using a pulse generator sending the same pulse on 2 different digitizer channels.

Time dispersion obtained with two LaBr₃(Ce) detectors placed in front of a ²²Na source.

Instrument Control Service. Project & Techniques Division. http://www.ill.eu/instruments-support/instrument-control/ Institut Laue-Langevin. B.P.156 - 6 rue Jules Horowitz 38042 Grenoble, France.

TUPPC083 ICALEPCS 2013 October 06-11, San Francisco, California

