
Flexible Data Driven Experimental Data Analysis

at the National Ignition Facility After each target shot at the National Ignition Facility (NIF), scientists require data

analysis within 30 minutes from ~50 diagnostic instrument systems. To meet this

goal, NIF engineers created the Shot Data Analysis (SDA) Engine that uses the

Oracle Business Process Execution Language (BPEL) platform to configure

analyses and archive results. While this provided for a very powerful and flexible

analysis product, it still required software developers to create each unique

analysis configuration executed by the SDA engine. As more and more

diagnostics were developed and the demand for analysis increased, the

development team was not able to keep pace with the rate of change. To solve

this problem, the Data Systems team took the approach of creating a data-driven

framework that allows users to specify the analysis configuration (analysis

routine, inputs and outputs), input data sources, and results archive destinations

as data that is stored in the database. The creation of this Data Driven Engine

(DDE) has decreased the manpower required to integrate new analysis and has

simplified maintenance of existing configurations. The architecture and

functionality of the Data Driven Engine will be presented along with examples.

A. Casey, R. Bettenhausen, E. Bond, R. Fallejo, M. Hutton, J. Liebman, A. Marsh, T. Pannell, S. Reisdorf, A. Warrick

Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA

BPEL
Business Process Execution

Language

Pros:
• COTS Workflow Tool
• Immediate development

Cons:
• Not suited for volume spikes
• Requires special developer training
• Requires special system administration
• Inefficient re-use model:
 - based on re-usable processes
 - Introduces communication overhead
 that can cause timeout failures
• Lack of data mapping transparency

DDE
Data Driven Engine

Pros:
• Data Driven
• Impervious to volume spikes
• Framework provides re-use and data

mapping functions
• No special system administration
• No special language
 - analysis developers specify the data
 mapping in Excel spreadsheets
• Transparent data mapping

Cons:
• Lack of programming constructs can result

in complex data specification
• Required time to develop the tool

The Shot Data Analysis Engine consists of an Analysis Director that sequences the analysis for each
diagnostic; a Data Mapper that maps data from data sources (Archive, Calibration, NIF Configuration)
to analysis, and maps results to the archive; and a Cluster of Analysis Servers that execute the
analysis routines. We migrated the Data Mapper from a COTS Workflow product to an in-house
developed data-driven application that significantly reduces the time to integrate new analyses.

FROM_DATASOURCE FROM_PARAM TO_PATH

setup_parameters TARGET_VIEW_ANGLE dante_setup.target_viewangle

setup_parameters TARGET_LEH_DIAMETER dante_setup.LEH_diameter

setup_parameters CHAN_COMP_APPLY_ALIGN chan_comp.apply_align

fixed_params TCC_DISTANCE dante_setup.TCC_distance

fixed_params CHAN_COMP_FALLPEAK_RATIO chan_comp.fall_peak_ratio

fixed_params CHAN_COMP_DWNSAMP_TSTEP chan_comp.downsamp_time_step

fixed_params NUM_ITER blackbody.num_iter

fixed_params BLACK_BODY_START_TEMP blackbody.start_temp

fixed_params VOLT_RATIO blackbody.voltratio_value

fixed_params VOLT_RATIO_APPLY_CORR blackbody.voltratio_applycorr

fixed_params LOW_ENERGY_END_RANGE energy_range.lowenergy_end_range

fixed_params LBAND_START_EV energy_range.lband_start_ev

fixed_params LBAND_END_EV energy_range.lband_end_ev

fixed_params LBAND_START_RANGE energy_range.lband_start_range

Summary

In the field of SW development, the general strategy is to use COTS products

wherever possible in order to minimize local development effort and to

maximize the capabilities and experience of another development team.

However, there are times when the replacement of COTS products with

custom software yields significant benefits in terms of tailored functionality

that fully meets the user needs and makes better use of development dollars.

In migrating from BPEL to the DDE, the Analysis team at NIF achieved:

1. more efficient re-use of existing capabilities and functions;

2. simpler, user-specified data mapper configurations;

3. increased transparency and maintainability of data mapper

configurations;

4. load balancing that handles peak loads predictably and reliably;

5. less manpower to add a new analysis to the Shot Data Analysis Engine;

6. fewer dedicated, specialized software developers.

With the new DDE, the team is expecting to be able to achieve:

1. greater simplification and maintainability of data mapper configurations;

2. additional decrease in manpower needed to integrate a new analysis.

Data Mapper Technologies

The original implementation
used a COTS workflow engine
that executes XML-based logic.

Next, we built a Java framework
that included reusable data
mapping functions and error
handling. Analysts specify all
data mapping in Excel.

Last, we added user-defined
Macros for complex data
mapping logic, and provided a
web interface to the Analysis
Interface Specification from
which we extract data map
requirements.

Analysis Integration Time

 Data Mapper Evolution

Shot Data Analysis Processing

New DDE
Data Driven Engine

Pros:
• Includes Macro ability for complex logic
• Provides a web interface to specify data

mapping
• Interface mimics the Interface Document

currently used by analysis developers

Cons:
• Required time to develop the tool

Sample DDE Specification:

<switch id="BpSwt1" name="Switch_Diag">
-<case condition="starts-with(bpws:getVariableData('origDataTaxon'), 'CONFIG')">
-<bpelx:annotation>
<bpelx:pattern patternName="case">
Got Config Taxon</bpelx:pattern>
</bpelx:annotation>
-<sequence id="BpSeq3" name="Sequence_InputIsConfigData">
-<assign id="BpAss9" name="ParseAgain">
-<copy>
<from expression="substring-after(bpws:getVariableData('parsedTaxon'), '|')"/>
<to variable="parsedTaxon"/>
</copy>
</assign>

Sample BPEL XML Specification:

BPEL

 - BPEL COTS product

 - Web Services

 - XML

Data Driven Engine

 - Java/JDBC

 - Web Services

 - XML

 - Excel Spreadsheets

New Data Driven Engine

 - Java

 - Web Services

 - XML

 - WebDAV

 - Groovy/Velocity Macros

 - Struts/JQuery/HTML

0

2

4

6

8

10

12

14

16

BPEL DDE New DDE

M
an

p
o

w
e

r
(W

e
e

ks
)

Data Mapper Technology

Comparison of data mapper integration
times for a new analysis

Analysis Config Template

Archive Object Definition

Process Logic

Interface Specification

LLNL-POST-644238

