IMPLEMENTATION OF CONTINUOUS SCANS USED IN BEAMLINE EXPERIMENTS AT ALBA SYNCHROTRON

Z. Reszela, F. Becheri, G. Cuní, D. Fernández-Carreiras, J. Moldes, C. Pascual-Izarra, (CELLS-ALBA, Spain) T. Coutinho ESRF (Grenoble, France)

Alba - 3rd generation synchrotron

- +) located near Barcelona, Spain
- +) 1st construction phase = accelerators + 7 beamlines
- +) designed, built and commissioned by 2012
- +) 7 beamlines host user experiments regularly

Sardana (on top of Tango) – CS of Alba

- +) software package for building a distributed CS +) easy plug-in solution for the hardware controllers +) comprehensive interfaces for the common elements: motors, experimental channels, pseudo-axes, etc +) python based macro and sequence environment
- +) modern GUI front-ends
- +) generic scan framework (GSF)

Why continuous scans?

- +) step scan = sequential execution of motion and acquisition multiple accelerations/decelerations
 - extra software overheads
 - mechanical vibrations
- +) continuous scan = simultaneous motion and acquisitions scan time reduction

difficulties in abstract design and implementation

BL04 - MSPD

High energy beamline (8 - 50 keV), comprises two experimental stations: +) high resolution powder diffraction (HRPD)

+) high pressure powder diffraction (HPPD)

The main instruments of HRPD: +) three circle diffractometer +) MAD26 detector resides on the OC +) 6 x Mythen 1D mounted on the MC

Scans the OC rotational axis on a total range of 40 – 120 degrees. Diffraction pattern is gathered with 13 channels of the MAD26 & the monitor channel.

3C diffractometer and its MAD26 and Mythen detectors **BL22 - CLAESS**

High energy beamline (2.4 - 65 keV), implements X-ray absorption & emission spectroscopic techniques. Its main instruments are:

- +) double crystal monochromator (DCM)
- +) ionization chambers
- +) position sensitive detector
- +) fluorescence detector

Scans the beam energy using a DCM, at the same time maintaining the fixed exit offset.

Reduction of the scan time to range of fraction of a second is required.

Si crystal stages of the DCM

BL29 – BOREAS Soft X-ray beamline (80 - 3000

eV), implements magnetic circular and linear dichroism: XMCD/XMLD. T wo cutting edge end-stations: + high-field vector magnet (HECTOR) for absorption methods +) UHV reflectometer (MARES) for scattering and reflection approaches.

ID (undulator) located in the accelerator's tunnel

Scans the beam energy using a plane grating monochromator (VLS-PGM). ID (undulator) must follow the energy change. XMCD absorption method detection achieved by total electron/fluorescence yield measurements (measured with low current ammeters).

Motion

+) start of the multiple axes achieved by the Icepap multiple motion command and the Turbo Pmac 2 motion programs +) pseudomotors resolved by the top-down inspection of the hierarchy of the all involved moveable axes +) common acceleration times but separated velocities and

Acquisition

<u>MAD26 \rightarrow Cyberstart X2000 PPU \rightarrow NI6602 counters:</u> 3 Ni6602 PCI cards (32 bit counter and 80MHz clock) with RTSI used for routing signals.

Synchronization

Time driven hardware trigger used to synchronize experimental channels.

Theoretical trajectories of motors involved in the continuous scan: constant velocity represent an "effective" scan region.

Performance and results

Set-up	Step scan time	Continuous scan time
BL04 - MSPD angular range: 100° integ. time: 0.025s nr of points: 100 000	~ 9h 26min	~ 42min
BL22 - CLAESS energy range: 1keV (8969keV - 9969keV) integ. time: 0.0291s nr of points: 4000	~ 1h 3min	~ 3min
BL29 - BOREAS energy range: 65eV (755eV - 820eV) integ. time: 0.0124s nr of points: 4000	~ 1h 25min	~ 3min

Low current measurements:

- +) AlbaEM: 1kHz sampling and 12 bits digitization
- +) AlbaEM + Adlink2005 (external ADC): 500 kHz sampling and 16 bits digitization

Online data collection and storage mechanism

Step scan.dat Quick scan.da EXAFS: step scan (45 min) vs quick scan (30 s) 12

Cu foil EXAFS

Position measurement as an experimental channel:

- +) Turbo Pmac 2 position capture feature
- +) Ni6602 position measurement application

Instruments and controls hardware involved in HRPD experiment

Future development

Flexibility of selection the experimental channels implementing various triggering modes: hardware triggering and/or gating as well as software triggering must be provided. **Correlation of the data**, produced by the channels of the different nature, should be also implemented. The **1D** and the **2D** experimental channels are very common in the experimental set-ups. Normally they generate much more data than 0D experimental channels. GSF should be able to handle experimental channels producing data at the **high rate** and of **considerable size**.

Various approaches for implementing hardware triggering in the continuous scans exists. The most common are position driven and time driven. Generalization and transparency in implementation and usage should be achieved.

An approach of using software/hardware synchronized **timestamps**, redistributed to all the participant devices seems to be the future standard of the continuous scans. Each data acquired during the scan would have a timestamp and higher software layers could then manage this data to be easily interpreted by the end user.

