
Concept and Prototype for a Distributed Analysis Framework
for the LHC Machine Data

K. Fuchsberger, J.C. Garnier, A.A. Gorzawski, E. Motesnitsalis (CERN, Geneva, Switzerland)

Abstract
The Large Hadron Collider (LHC) at CERN produces more than 50 TB of diagnostic data every year, shared
between normal running periods as well as commissioning periods. The data is collected in different
systems, such as the LHC Post Mortem System (PM), the LHC Logging Database and different file catalogs.
To analyze and correlate data from these systems it is necessary to extract data to a local workspace and
to use scripts to obtain and correlate the required information. Since the amount of data can be huge
(depending on the task to be achieved) this approach can be very inefficient. To cope with this problem, a
new project was launched to bring the analysis closer to the data itself. This paper describes the concepts
and the implementation of the first prototype of an extensible framework, which will allow integrating
all the existing data sources as well as future extensions, like hadoop clusters or other parallelization
frameworks.

Overview

Motivation
The LHC produces about 50 TB of diagnostics data
per year, mainly stored in two systems:

• LHC Post Mortem System (PM): Stores data
at a high resolution over short time ranges.

• Common Accelerator Logging Service
(CALS): Provides continuous logging of
equipment signals all around the LHC.

Problems:

• Hard to correlate data
• Slow Data extraction
• High code duplication

Requirements

Basic Requirements:

• Calculations close to the data
• Horizontal Scalability

Should also handle:

• Data incompleteness
• Data invalidity
• Mathematical operations
• Physical units
• Error propagation

Parallelization

Prototype using Akka [4]:

• Gained factor of 20 (parallel data extraction)
on one node [5].

• Next steps:

– Parallization of Dispatcher
– Prototype on real cluster

eDSL and Execution

Very flexible layer of execution:

• Start with a very simple solution

• Later optimize execution without any impact
on the language level

An Example:

Produced Expression Tree [3]:

• Square brackets ([]): labels for the nodes

• Blue: resolved (known values)

• Green: unresolved (to be calculated)

Tree Resolving

Algorithm:

1. Starting from root node [A], dispatcher
queries each resolver: canResolve(..). A re-
solver can resolve a given node,

• if signature of the invoke(..) method
matches the node

• and if canInvoke(..) method returns
true for the node.

2. Dispatcher remembers potential candidate
resolvers in a list.

3. If no resolver found: recursive invocations
(node [B] in example).

4. Else: Dispatcher stops the iteration through
the tree in this branch (node [C] in example).

5. Dispatcher selects one of the candidate re-
solvers per node, invokes it and rebuilds the
tree.

6. After all resolvers returned: loop starting at
item (1), until all nodes resolved.

• Easy to add optimized resolvers.

• Potential Improvements:

– Parallelization of resolvers (5).

– Machine learning for resolver selection.

– Caching of intermediate results.

References
[1] K. Fuchsberger et al., “Automated Execution and Tracking of the LHC Commissioning

Tests”, proc. of IPAC12, New Orleans, LA, USA.

[2] D. Anderson et al., “The AccTesting Framework: An Extensible Framework for Accelerator
Commissioning and Systematic Testing”, these proceedings

[3] D. Andersen et al., “Using a Java Embedded DSL for LHC Test Analysis”, these proceedings.

[4] http://akka.io

[5] E. Motesnitsalis, “Using Akka Platform in Unidentified Falling Object Detection on the
LHC”, CERN TE Notes, CERN, Geneva, 2013.

1


